Loading…
Silica-rich lavas in the oceanic crust: experimental evidence for fractional crystallization under low water activity
We experimentally investigated phase relations and phase compositions as well as the influence of water activity ( a H 2 O) and redox conditions on the equilibrium crystallization path within an oceanic dacitic potassium-depleted system at shallow pressure (200 MPa). Moreover, we measured the partit...
Saved in:
Published in: | Contributions to mineralogy and petrology 2016-10, Vol.171 (10), p.1, Article 83 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a374t-6faf3090575d1eff3f48cdb89a1446c8d7e3309938e38ada56e697a246ba3b453 |
---|---|
cites | cdi_FETCH-LOGICAL-a374t-6faf3090575d1eff3f48cdb89a1446c8d7e3309938e38ada56e697a246ba3b453 |
container_end_page | |
container_issue | 10 |
container_start_page | 1 |
container_title | Contributions to mineralogy and petrology |
container_volume | 171 |
creator | Erdmann, Martin Koepke, Jürgen |
description | We experimentally investigated phase relations and phase compositions as well as the influence of water activity (
a
H
2
O) and redox conditions on the equilibrium crystallization path within an oceanic dacitic potassium-depleted system at shallow pressure (200 MPa). Moreover, we measured the partitioning of trace elements between melt and plagioclase via secondary ion mass spectrometry for a highly evolved experiment (SiO
2
= 74.6 wt%). As starting material, we used a dacitic glass dredged at the Pacific-Antarctic Rise. Phase assemblages in natural high-silica systems reported from different locations of fast-spreading oceanic crust could be experimentally reproduced only in a relatively small range of temperature and melt-water content (
T
~950 °C; melt H
2
O |
doi_str_mv | 10.1007/s00410-016-1294-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03712931v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4183183841</sourcerecordid><originalsourceid>FETCH-LOGICAL-a374t-6faf3090575d1eff3f48cdb89a1446c8d7e3309938e38ada56e697a246ba3b453</originalsourceid><addsrcrecordid>eNp1kUFP3DAQha2qSN0u_ABulrhVShnHjhNzQ6gUpJU4FM7WrDPuGqXJYidLl1-PV0GICyfb8755Y_sxdirgpwCozxOAElCA0IUojSrgC1sIJcsCjK6_sgVAVmtjzDf2PaVHyOfGVAs2_QldcFjE4Da8wx0mHno-bogPjrAPjrs4pfGC0_8txfCP-hE7TrvQUu-I-yFyH9GNYehz3cV9ynoXXvBQ4VPfUuTd8Myfccy7A7gL4_6YHXnsEp28rUv2cP3r_uqmWN39vr26XBUoazUW2qOXYKCqq1aQ99KrxrXrxqBQSrumrUlm3ciGZIMtVpq0qbFUeo1yrSq5ZD9m3w12dpuvj3FvBwz25nJlQ58mC7LO_yXFTmT4bIa3cXiaKI32cZhiflayohFGV1pCmSkxUy4OKUXy774C7CEKO0dhcxT2EEUesWTl3JMy2_-l-MH506ZXLfCNCA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1819656302</pqid></control><display><type>article</type><title>Silica-rich lavas in the oceanic crust: experimental evidence for fractional crystallization under low water activity</title><source>Springer Nature</source><creator>Erdmann, Martin ; Koepke, Jürgen</creator><creatorcontrib>Erdmann, Martin ; Koepke, Jürgen</creatorcontrib><description>We experimentally investigated phase relations and phase compositions as well as the influence of water activity (
a
H
2
O) and redox conditions on the equilibrium crystallization path within an oceanic dacitic potassium-depleted system at shallow pressure (200 MPa). Moreover, we measured the partitioning of trace elements between melt and plagioclase via secondary ion mass spectrometry for a highly evolved experiment (SiO
2
= 74.6 wt%). As starting material, we used a dacitic glass dredged at the Pacific-Antarctic Rise. Phase assemblages in natural high-silica systems reported from different locations of fast-spreading oceanic crust could be experimentally reproduced only in a relatively small range of temperature and melt-water content (
T
~950 °C; melt H
2
O < 1.5 wt%) at redox conditions slightly below the quartz–fayalite–magnetite buffer. The relatively low water content is remarkable, because distinct hydrothermal influence is generally regarded as key for producing silica-rich rocks in an oceanic environment. However, our conclusion is also supported by mineral and melt chemistry of natural evolved rocks; these rocks are only congruent to the composition of those experimental phases that are produced under low
a
H
2
O. Low FeO contents under water-saturated conditions and the characteristic enrichment of Al
2
O
3
in high
a
H
2
O experiments, in particular, contradict natural observations, while experiments with low
a
H
2
O match the natural trend. Moreover, the observation that highly evolved experimental melts remain H
2
O-poor while they are relatively enriched in chlorine implies a decoupling between these two volatiles during crustal contamination.</description><identifier>ISSN: 0010-7999</identifier><identifier>EISSN: 1432-0967</identifier><identifier>DOI: 10.1007/s00410-016-1294-0</identifier><identifier>CODEN: CMPEAP</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Chlorine ; Crystallization ; Earth and Environmental Science ; Earth Sciences ; Fractionation ; Geology ; Marine environment ; Mass spectrometry ; Meltwater ; Mineral Resources ; Mineralogy ; Oceanic analysis ; Oceanic crust ; Original Paper ; Petrology ; Rocks ; Sciences of the Universe ; Silica ; Trace elements ; Water content ; Water resources management</subject><ispartof>Contributions to mineralogy and petrology, 2016-10, Vol.171 (10), p.1, Article 83</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a374t-6faf3090575d1eff3f48cdb89a1446c8d7e3309938e38ada56e697a246ba3b453</citedby><cites>FETCH-LOGICAL-a374t-6faf3090575d1eff3f48cdb89a1446c8d7e3309938e38ada56e697a246ba3b453</cites><orcidid>0000-0001-6754-0501</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03712931$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Erdmann, Martin</creatorcontrib><creatorcontrib>Koepke, Jürgen</creatorcontrib><title>Silica-rich lavas in the oceanic crust: experimental evidence for fractional crystallization under low water activity</title><title>Contributions to mineralogy and petrology</title><addtitle>Contrib Mineral Petrol</addtitle><description>We experimentally investigated phase relations and phase compositions as well as the influence of water activity (
a
H
2
O) and redox conditions on the equilibrium crystallization path within an oceanic dacitic potassium-depleted system at shallow pressure (200 MPa). Moreover, we measured the partitioning of trace elements between melt and plagioclase via secondary ion mass spectrometry for a highly evolved experiment (SiO
2
= 74.6 wt%). As starting material, we used a dacitic glass dredged at the Pacific-Antarctic Rise. Phase assemblages in natural high-silica systems reported from different locations of fast-spreading oceanic crust could be experimentally reproduced only in a relatively small range of temperature and melt-water content (
T
~950 °C; melt H
2
O < 1.5 wt%) at redox conditions slightly below the quartz–fayalite–magnetite buffer. The relatively low water content is remarkable, because distinct hydrothermal influence is generally regarded as key for producing silica-rich rocks in an oceanic environment. However, our conclusion is also supported by mineral and melt chemistry of natural evolved rocks; these rocks are only congruent to the composition of those experimental phases that are produced under low
a
H
2
O. Low FeO contents under water-saturated conditions and the characteristic enrichment of Al
2
O
3
in high
a
H
2
O experiments, in particular, contradict natural observations, while experiments with low
a
H
2
O match the natural trend. Moreover, the observation that highly evolved experimental melts remain H
2
O-poor while they are relatively enriched in chlorine implies a decoupling between these two volatiles during crustal contamination.</description><subject>Chlorine</subject><subject>Crystallization</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Fractionation</subject><subject>Geology</subject><subject>Marine environment</subject><subject>Mass spectrometry</subject><subject>Meltwater</subject><subject>Mineral Resources</subject><subject>Mineralogy</subject><subject>Oceanic analysis</subject><subject>Oceanic crust</subject><subject>Original Paper</subject><subject>Petrology</subject><subject>Rocks</subject><subject>Sciences of the Universe</subject><subject>Silica</subject><subject>Trace elements</subject><subject>Water content</subject><subject>Water resources management</subject><issn>0010-7999</issn><issn>1432-0967</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kUFP3DAQha2qSN0u_ABulrhVShnHjhNzQ6gUpJU4FM7WrDPuGqXJYidLl1-PV0GICyfb8755Y_sxdirgpwCozxOAElCA0IUojSrgC1sIJcsCjK6_sgVAVmtjzDf2PaVHyOfGVAs2_QldcFjE4Da8wx0mHno-bogPjrAPjrs4pfGC0_8txfCP-hE7TrvQUu-I-yFyH9GNYehz3cV9ynoXXvBQ4VPfUuTd8Myfccy7A7gL4_6YHXnsEp28rUv2cP3r_uqmWN39vr26XBUoazUW2qOXYKCqq1aQ99KrxrXrxqBQSrumrUlm3ciGZIMtVpq0qbFUeo1yrSq5ZD9m3w12dpuvj3FvBwz25nJlQ58mC7LO_yXFTmT4bIa3cXiaKI32cZhiflayohFGV1pCmSkxUy4OKUXy774C7CEKO0dhcxT2EEUesWTl3JMy2_-l-MH506ZXLfCNCA</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Erdmann, Martin</creator><creator>Koepke, Jürgen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TN</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>R05</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-6754-0501</orcidid></search><sort><creationdate>20161001</creationdate><title>Silica-rich lavas in the oceanic crust: experimental evidence for fractional crystallization under low water activity</title><author>Erdmann, Martin ; Koepke, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a374t-6faf3090575d1eff3f48cdb89a1446c8d7e3309938e38ada56e697a246ba3b453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Chlorine</topic><topic>Crystallization</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Fractionation</topic><topic>Geology</topic><topic>Marine environment</topic><topic>Mass spectrometry</topic><topic>Meltwater</topic><topic>Mineral Resources</topic><topic>Mineralogy</topic><topic>Oceanic analysis</topic><topic>Oceanic crust</topic><topic>Original Paper</topic><topic>Petrology</topic><topic>Rocks</topic><topic>Sciences of the Universe</topic><topic>Silica</topic><topic>Trace elements</topic><topic>Water content</topic><topic>Water resources management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Erdmann, Martin</creatorcontrib><creatorcontrib>Koepke, Jürgen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Oceanic Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep (ProQuest)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Contributions to mineralogy and petrology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Erdmann, Martin</au><au>Koepke, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Silica-rich lavas in the oceanic crust: experimental evidence for fractional crystallization under low water activity</atitle><jtitle>Contributions to mineralogy and petrology</jtitle><stitle>Contrib Mineral Petrol</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>171</volume><issue>10</issue><spage>1</spage><pages>1-</pages><artnum>83</artnum><issn>0010-7999</issn><eissn>1432-0967</eissn><coden>CMPEAP</coden><abstract>We experimentally investigated phase relations and phase compositions as well as the influence of water activity (
a
H
2
O) and redox conditions on the equilibrium crystallization path within an oceanic dacitic potassium-depleted system at shallow pressure (200 MPa). Moreover, we measured the partitioning of trace elements between melt and plagioclase via secondary ion mass spectrometry for a highly evolved experiment (SiO
2
= 74.6 wt%). As starting material, we used a dacitic glass dredged at the Pacific-Antarctic Rise. Phase assemblages in natural high-silica systems reported from different locations of fast-spreading oceanic crust could be experimentally reproduced only in a relatively small range of temperature and melt-water content (
T
~950 °C; melt H
2
O < 1.5 wt%) at redox conditions slightly below the quartz–fayalite–magnetite buffer. The relatively low water content is remarkable, because distinct hydrothermal influence is generally regarded as key for producing silica-rich rocks in an oceanic environment. However, our conclusion is also supported by mineral and melt chemistry of natural evolved rocks; these rocks are only congruent to the composition of those experimental phases that are produced under low
a
H
2
O. Low FeO contents under water-saturated conditions and the characteristic enrichment of Al
2
O
3
in high
a
H
2
O experiments, in particular, contradict natural observations, while experiments with low
a
H
2
O match the natural trend. Moreover, the observation that highly evolved experimental melts remain H
2
O-poor while they are relatively enriched in chlorine implies a decoupling between these two volatiles during crustal contamination.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00410-016-1294-0</doi><orcidid>https://orcid.org/0000-0001-6754-0501</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-7999 |
ispartof | Contributions to mineralogy and petrology, 2016-10, Vol.171 (10), p.1, Article 83 |
issn | 0010-7999 1432-0967 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_03712931v1 |
source | Springer Nature |
subjects | Chlorine Crystallization Earth and Environmental Science Earth Sciences Fractionation Geology Marine environment Mass spectrometry Meltwater Mineral Resources Mineralogy Oceanic analysis Oceanic crust Original Paper Petrology Rocks Sciences of the Universe Silica Trace elements Water content Water resources management |
title | Silica-rich lavas in the oceanic crust: experimental evidence for fractional crystallization under low water activity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A02%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Silica-rich%20lavas%20in%20the%20oceanic%20crust:%20experimental%20evidence%20for%20fractional%20crystallization%20under%20low%20water%20activity&rft.jtitle=Contributions%20to%20mineralogy%20and%20petrology&rft.au=Erdmann,%20Martin&rft.date=2016-10-01&rft.volume=171&rft.issue=10&rft.spage=1&rft.pages=1-&rft.artnum=83&rft.issn=0010-7999&rft.eissn=1432-0967&rft.coden=CMPEAP&rft_id=info:doi/10.1007/s00410-016-1294-0&rft_dat=%3Cproquest_hal_p%3E4183183841%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a374t-6faf3090575d1eff3f48cdb89a1446c8d7e3309938e38ada56e697a246ba3b453%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1819656302&rft_id=info:pmid/&rfr_iscdi=true |