Loading…
SORA: Stellar occultation reduction and analysis
The stellar occultation technique provides competitive accuracy in determining the sizes, shapes, astrometry, etc., of the occulting body, comparable to in-situ observations by spacecraft. With the increase in the number of known Solar system objects expected from the LSST, the highly precise astrom...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2022-02, Vol.511 (1), p.1167-1181 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The stellar occultation technique provides competitive accuracy in determining the sizes, shapes, astrometry, etc., of the occulting body, comparable to in-situ observations by spacecraft. With the increase in the number of known Solar system objects expected from the LSST, the highly precise astrometric catalogs, such as Gaia, and the improvement of ephemerides, occultations observations will become more common with a higher number of chords in each observation. In the context of the Big Data era, we developed sora, an open-source python library to reduce and analyse stellar occultation data efficiently. It includes routines from predicting such events up to the determination of Solar system bodies’ sizes, shapes, and positions. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stac032 |