Loading…
Orange hydrogen is the new green
Maintaining global warming well below 2 °C, as stipulated in the Paris Agreement, will require a complete overhaul of the world energy system. Hydrogen is considered to be a key component of the decarbonization strategy for large parts of the transport system, as well as some heavy industries. Today...
Saved in:
Published in: | Nature geoscience 2022-10, Vol.15 (10), p.765-769 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c398t-50b5b01e1e129c4ebc12cfa6c02d5d219be211ea58e23b97834f15fd0b5d0c213 |
---|---|
cites | cdi_FETCH-LOGICAL-c398t-50b5b01e1e129c4ebc12cfa6c02d5d219be211ea58e23b97834f15fd0b5d0c213 |
container_end_page | 769 |
container_issue | 10 |
container_start_page | 765 |
container_title | Nature geoscience |
container_volume | 15 |
creator | Osselin, F. Soulaine, C. Fauguerolles, C. Gaucher, E. C. Scaillet, B. Pichavant, M. |
description | Maintaining global warming well below 2 °C, as stipulated in the Paris Agreement, will require a complete overhaul of the world energy system. Hydrogen is considered to be a key component of the decarbonization strategy for large parts of the transport system, as well as some heavy industries. Today, about 96% of current hydrogen production comes from the steam reforming of coal or natural gas (labelled black and grey hydrogen, respectively). If hydrogen is to become a solution, then black and grey hydrogen need to be replaced by a low-carbon option. One method that has received much attention is to produce so-called green hydrogen by coupling water electrolysis with renewable energies. However, green hydrogen is expensive and energy-intensive to produce. Here, we explore an alternative option and highlight the benefits of rock-based hydrogen (white and orange) compared with classic electrolysis-based technologies. We show that the exploitation of native hydrogen and its combination with carbon sequestration has the potential to fuel a large part of the energy transition without the substantial energy and raw material cost of green hydrogen.
Enhancing natural subsurface hydrogen production through water injection could make a substantial contribution to achieving the low-carbon energy transition that is required to limit global warming. |
doi_str_mv | 10.1038/s41561-022-01043-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_03858117v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2724433027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-50b5b01e1e129c4ebc12cfa6c02d5d219be211ea58e23b97834f15fd0b5d0c213</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_wNOCN2F1Jh_d5FiKtkKhFz2HbHa23VJ3a9Iq_femrh83yWEy8LwvycPYNcIdgtD3UaIaYQ6c54AgRW5O2AALlVYD-vTnro08ZxcxrgFGIAs1YNkiuHZJ2epQhW5JbdbEbLeirKWPbBmI2kt2VrtNpKvvOWQvjw_Pk1k-X0yfJuN57oXRu1xBqUpASocbL6n0yH3tRh54pSqOpiSOSE5p4qI0hRayRlVXKVaB5yiG7LbvXbmN3Ybm1YWD7VxjZ-O5bdq4t-mfSiMW70f4poe3oXvbU9zZdbcPbXqf5QWXUgjgRaJ4T_nQxRio_u1FsEdtttdmkzb7pc2aFBJ9KCY4mQl_1f-kPgGBKWzs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2724433027</pqid></control><display><type>article</type><title>Orange hydrogen is the new green</title><source>Nature</source><creator>Osselin, F. ; Soulaine, C. ; Fauguerolles, C. ; Gaucher, E. C. ; Scaillet, B. ; Pichavant, M.</creator><creatorcontrib>Osselin, F. ; Soulaine, C. ; Fauguerolles, C. ; Gaucher, E. C. ; Scaillet, B. ; Pichavant, M.</creatorcontrib><description>Maintaining global warming well below 2 °C, as stipulated in the Paris Agreement, will require a complete overhaul of the world energy system. Hydrogen is considered to be a key component of the decarbonization strategy for large parts of the transport system, as well as some heavy industries. Today, about 96% of current hydrogen production comes from the steam reforming of coal or natural gas (labelled black and grey hydrogen, respectively). If hydrogen is to become a solution, then black and grey hydrogen need to be replaced by a low-carbon option. One method that has received much attention is to produce so-called green hydrogen by coupling water electrolysis with renewable energies. However, green hydrogen is expensive and energy-intensive to produce. Here, we explore an alternative option and highlight the benefits of rock-based hydrogen (white and orange) compared with classic electrolysis-based technologies. We show that the exploitation of native hydrogen and its combination with carbon sequestration has the potential to fuel a large part of the energy transition without the substantial energy and raw material cost of green hydrogen.
Enhancing natural subsurface hydrogen production through water injection could make a substantial contribution to achieving the low-carbon energy transition that is required to limit global warming.</description><identifier>ISSN: 1752-0894</identifier><identifier>EISSN: 1752-0908</identifier><identifier>DOI: 10.1038/s41561-022-01043-9</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>704/106 ; 704/106/694/682 ; 704/2151/209 ; Carbon ; Carbon sequestration ; Clean energy ; Climate change ; Coal ; Decarbonization ; Earth and Environmental Science ; Earth Sciences ; Earth System Sciences ; Electrolysis ; Energy ; Energy transition ; Exploitation ; Geochemistry ; Geology ; Geophysics/Geodesy ; Global warming ; Green hydrogen ; Hydrogen ; Hydrogen production ; Hydrogen-based energy ; Natural gas ; Paris Agreement ; Perspective ; Raw materials ; Reforming ; Renewable energy ; Sciences of the Universe ; Transportation systems ; Water injection</subject><ispartof>Nature geoscience, 2022-10, Vol.15 (10), p.765-769</ispartof><rights>Springer Nature Limited 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-50b5b01e1e129c4ebc12cfa6c02d5d219be211ea58e23b97834f15fd0b5d0c213</citedby><cites>FETCH-LOGICAL-c398t-50b5b01e1e129c4ebc12cfa6c02d5d219be211ea58e23b97834f15fd0b5d0c213</cites><orcidid>0000-0001-7027-8751 ; 0000-0002-7976-8455 ; 0000-0003-1991-7153 ; 0000-0003-1561-0226 ; 0000-0001-8346-5302 ; 0000-0002-6151-3286</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03858117$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Osselin, F.</creatorcontrib><creatorcontrib>Soulaine, C.</creatorcontrib><creatorcontrib>Fauguerolles, C.</creatorcontrib><creatorcontrib>Gaucher, E. C.</creatorcontrib><creatorcontrib>Scaillet, B.</creatorcontrib><creatorcontrib>Pichavant, M.</creatorcontrib><title>Orange hydrogen is the new green</title><title>Nature geoscience</title><addtitle>Nat. Geosci</addtitle><description>Maintaining global warming well below 2 °C, as stipulated in the Paris Agreement, will require a complete overhaul of the world energy system. Hydrogen is considered to be a key component of the decarbonization strategy for large parts of the transport system, as well as some heavy industries. Today, about 96% of current hydrogen production comes from the steam reforming of coal or natural gas (labelled black and grey hydrogen, respectively). If hydrogen is to become a solution, then black and grey hydrogen need to be replaced by a low-carbon option. One method that has received much attention is to produce so-called green hydrogen by coupling water electrolysis with renewable energies. However, green hydrogen is expensive and energy-intensive to produce. Here, we explore an alternative option and highlight the benefits of rock-based hydrogen (white and orange) compared with classic electrolysis-based technologies. We show that the exploitation of native hydrogen and its combination with carbon sequestration has the potential to fuel a large part of the energy transition without the substantial energy and raw material cost of green hydrogen.
Enhancing natural subsurface hydrogen production through water injection could make a substantial contribution to achieving the low-carbon energy transition that is required to limit global warming.</description><subject>704/106</subject><subject>704/106/694/682</subject><subject>704/2151/209</subject><subject>Carbon</subject><subject>Carbon sequestration</subject><subject>Clean energy</subject><subject>Climate change</subject><subject>Coal</subject><subject>Decarbonization</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earth System Sciences</subject><subject>Electrolysis</subject><subject>Energy</subject><subject>Energy transition</subject><subject>Exploitation</subject><subject>Geochemistry</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Global warming</subject><subject>Green hydrogen</subject><subject>Hydrogen</subject><subject>Hydrogen production</subject><subject>Hydrogen-based energy</subject><subject>Natural gas</subject><subject>Paris Agreement</subject><subject>Perspective</subject><subject>Raw materials</subject><subject>Reforming</subject><subject>Renewable energy</subject><subject>Sciences of the Universe</subject><subject>Transportation systems</subject><subject>Water injection</subject><issn>1752-0894</issn><issn>1752-0908</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKt_wNOCN2F1Jh_d5FiKtkKhFz2HbHa23VJ3a9Iq_femrh83yWEy8LwvycPYNcIdgtD3UaIaYQ6c54AgRW5O2AALlVYD-vTnro08ZxcxrgFGIAs1YNkiuHZJ2epQhW5JbdbEbLeirKWPbBmI2kt2VrtNpKvvOWQvjw_Pk1k-X0yfJuN57oXRu1xBqUpASocbL6n0yH3tRh54pSqOpiSOSE5p4qI0hRayRlVXKVaB5yiG7LbvXbmN3Ybm1YWD7VxjZ-O5bdq4t-mfSiMW70f4poe3oXvbU9zZdbcPbXqf5QWXUgjgRaJ4T_nQxRio_u1FsEdtttdmkzb7pc2aFBJ9KCY4mQl_1f-kPgGBKWzs</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Osselin, F.</creator><creator>Soulaine, C.</creator><creator>Fauguerolles, C.</creator><creator>Gaucher, E. C.</creator><creator>Scaillet, B.</creator><creator>Pichavant, M.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FH</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>LK8</scope><scope>M7P</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7027-8751</orcidid><orcidid>https://orcid.org/0000-0002-7976-8455</orcidid><orcidid>https://orcid.org/0000-0003-1991-7153</orcidid><orcidid>https://orcid.org/0000-0003-1561-0226</orcidid><orcidid>https://orcid.org/0000-0001-8346-5302</orcidid><orcidid>https://orcid.org/0000-0002-6151-3286</orcidid></search><sort><creationdate>20221001</creationdate><title>Orange hydrogen is the new green</title><author>Osselin, F. ; Soulaine, C. ; Fauguerolles, C. ; Gaucher, E. C. ; Scaillet, B. ; Pichavant, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-50b5b01e1e129c4ebc12cfa6c02d5d219be211ea58e23b97834f15fd0b5d0c213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>704/106</topic><topic>704/106/694/682</topic><topic>704/2151/209</topic><topic>Carbon</topic><topic>Carbon sequestration</topic><topic>Clean energy</topic><topic>Climate change</topic><topic>Coal</topic><topic>Decarbonization</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earth System Sciences</topic><topic>Electrolysis</topic><topic>Energy</topic><topic>Energy transition</topic><topic>Exploitation</topic><topic>Geochemistry</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Global warming</topic><topic>Green hydrogen</topic><topic>Hydrogen</topic><topic>Hydrogen production</topic><topic>Hydrogen-based energy</topic><topic>Natural gas</topic><topic>Paris Agreement</topic><topic>Perspective</topic><topic>Raw materials</topic><topic>Reforming</topic><topic>Renewable energy</topic><topic>Sciences of the Universe</topic><topic>Transportation systems</topic><topic>Water injection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Osselin, F.</creatorcontrib><creatorcontrib>Soulaine, C.</creatorcontrib><creatorcontrib>Fauguerolles, C.</creatorcontrib><creatorcontrib>Gaucher, E. C.</creatorcontrib><creatorcontrib>Scaillet, B.</creatorcontrib><creatorcontrib>Pichavant, M.</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nature geoscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Osselin, F.</au><au>Soulaine, C.</au><au>Fauguerolles, C.</au><au>Gaucher, E. C.</au><au>Scaillet, B.</au><au>Pichavant, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Orange hydrogen is the new green</atitle><jtitle>Nature geoscience</jtitle><stitle>Nat. Geosci</stitle><date>2022-10-01</date><risdate>2022</risdate><volume>15</volume><issue>10</issue><spage>765</spage><epage>769</epage><pages>765-769</pages><issn>1752-0894</issn><eissn>1752-0908</eissn><abstract>Maintaining global warming well below 2 °C, as stipulated in the Paris Agreement, will require a complete overhaul of the world energy system. Hydrogen is considered to be a key component of the decarbonization strategy for large parts of the transport system, as well as some heavy industries. Today, about 96% of current hydrogen production comes from the steam reforming of coal or natural gas (labelled black and grey hydrogen, respectively). If hydrogen is to become a solution, then black and grey hydrogen need to be replaced by a low-carbon option. One method that has received much attention is to produce so-called green hydrogen by coupling water electrolysis with renewable energies. However, green hydrogen is expensive and energy-intensive to produce. Here, we explore an alternative option and highlight the benefits of rock-based hydrogen (white and orange) compared with classic electrolysis-based technologies. We show that the exploitation of native hydrogen and its combination with carbon sequestration has the potential to fuel a large part of the energy transition without the substantial energy and raw material cost of green hydrogen.
Enhancing natural subsurface hydrogen production through water injection could make a substantial contribution to achieving the low-carbon energy transition that is required to limit global warming.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41561-022-01043-9</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-7027-8751</orcidid><orcidid>https://orcid.org/0000-0002-7976-8455</orcidid><orcidid>https://orcid.org/0000-0003-1991-7153</orcidid><orcidid>https://orcid.org/0000-0003-1561-0226</orcidid><orcidid>https://orcid.org/0000-0001-8346-5302</orcidid><orcidid>https://orcid.org/0000-0002-6151-3286</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1752-0894 |
ispartof | Nature geoscience, 2022-10, Vol.15 (10), p.765-769 |
issn | 1752-0894 1752-0908 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_03858117v1 |
source | Nature |
subjects | 704/106 704/106/694/682 704/2151/209 Carbon Carbon sequestration Clean energy Climate change Coal Decarbonization Earth and Environmental Science Earth Sciences Earth System Sciences Electrolysis Energy Energy transition Exploitation Geochemistry Geology Geophysics/Geodesy Global warming Green hydrogen Hydrogen Hydrogen production Hydrogen-based energy Natural gas Paris Agreement Perspective Raw materials Reforming Renewable energy Sciences of the Universe Transportation systems Water injection |
title | Orange hydrogen is the new green |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Orange%20hydrogen%20is%20the%20new%20green&rft.jtitle=Nature%20geoscience&rft.au=Osselin,%20F.&rft.date=2022-10-01&rft.volume=15&rft.issue=10&rft.spage=765&rft.epage=769&rft.pages=765-769&rft.issn=1752-0894&rft.eissn=1752-0908&rft_id=info:doi/10.1038/s41561-022-01043-9&rft_dat=%3Cproquest_hal_p%3E2724433027%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-50b5b01e1e129c4ebc12cfa6c02d5d219be211ea58e23b97834f15fd0b5d0c213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2724433027&rft_id=info:pmid/&rfr_iscdi=true |