Loading…
A patchy CO2 exosphere on Ganymede revealed by the James Webb Space Telescope
Jupiter's icy moon Ganymede has a tenuous exosphere produced by sputtering and possibly sublimation of water ice. To date, only atomic hydrogen and oxygen have been directly detected in this exosphere. Here, we present observations of Ganymede's CO 2 exosphere obtained with the James Webb...
Saved in:
Published in: | Astronomy and astrophysics (Berlin) 2024-09, Vol.690 (October) |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | October |
container_start_page | |
container_title | Astronomy and astrophysics (Berlin) |
container_volume | 690 |
creator | Bockelee-Morvan, Dominique Poch, Olivier Leblanc, François Zakharov, Vladimir Lellouch, Emmanuel Quirico, Eric de Pater, Imke Fouchet, Thierry Rodriguez-Ovalle, Pablo Roth, Lorenz Merlin, Frédéric Duling, Stefan Saur, Joachim Masson, Adrien Fry, Patrick Trumbo, Samantha Brown, Michael Cartwright, Richard Cazaux, Stéphanie de Kleer, Katherine Fletcher, Leight N. Milby, Zachariah Moingeon, Audrey Mura, Alessandro Orton, Glenn S. Schmitt, Bernard Tosi, Federico Wong, Michael H. |
description | Jupiter's icy moon Ganymede has a tenuous exosphere produced by sputtering and possibly sublimation of water ice. To date, only atomic hydrogen and oxygen have been directly detected in this exosphere. Here, we present observations of Ganymede's CO 2 exosphere obtained with the James Webb Space Telescope. CO 2 gas is observed over different terrain types, mainly over those exposed to intense Jovian plasma irradiation, as well as over some bright or dark terrains. Despite warm surface temperatures, the CO 2 abundance over equatorial subsolar regions is low. CO 2 vapor has the highest abundance over the north polar cap of the leading hemisphere, reaching a surface pressure of 1 pbar. From modeling we show that the local enhancement observed near 12 h local time in this region can be explained by the presence of cold traps enabling CO 2 adsorption. However, whether the release mechanism in this high-latitude region is sputtering or sublimation remains unclear. The north polar cap of the leading hemisphere also has unique surface-ice properties, probably linked to the presence of the large atmospheric CO 2 excess over this region. These CO 2 molecules might have been initially released in the atmosphere after the radiolysis of CO 2 precursors, or from the sputtering of CO 2 embedded in the H 2 O ice bedrock. Dark terrains (regiones), more widespread on the north versus south polar regions, possibly harbor CO 2 precursors. CO 2 molecules would then be redistributed via cold trapping on ice-rich terrains of the polar cap and be diurnally released and redeposited on these terrains. Ganymede's CO 2 exosphere highlights the complexity of surface-atmosphere interactions on Jupiter's icy Galilean moons. |
doi_str_mv | 10.1051/0004-6361/202451599 |
format | article |
fullrecord | <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_04733988v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_insu_04733988v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-h155t-abcbc1415ca68f70f11e5186e32b82450be5cf90a7463580db4714071d206a6d3</originalsourceid><addsrcrecordid>eNqVjs1Kw0AURgdRsFafwM2shdh75y-TZSnaKpEurLgMM5MbEkmTkKnFvL0Fxb2rwweHj8PYLcI9gsYFAKjESIMLAUJp1Fl2xmaopEgg1eaczf6MS3YV48dpCrRyxl6WfHCHUE98tRWcvvo41DQS7zu-dt20p5L4SEdyLZXcT_xQE392e4r8nbznr4MLxHfUUgz9QNfsonJtpJtfztnb48NutUny7fpptcyTGrU-JM4HH1ChDs7YKoUKkTRaQ1J4e-oHTzpUGbhUGaktlF6lqCDFUoBxppRzdvfzW7u2GMZm78ap6F1TbJZ50XTxswCVSplZexT_kVF-A3TJXwY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A patchy CO2 exosphere on Ganymede revealed by the James Webb Space Telescope</title><source>EZB Electronic Journals Library</source><creator>Bockelee-Morvan, Dominique ; Poch, Olivier ; Leblanc, François ; Zakharov, Vladimir ; Lellouch, Emmanuel ; Quirico, Eric ; de Pater, Imke ; Fouchet, Thierry ; Rodriguez-Ovalle, Pablo ; Roth, Lorenz ; Merlin, Frédéric ; Duling, Stefan ; Saur, Joachim ; Masson, Adrien ; Fry, Patrick ; Trumbo, Samantha ; Brown, Michael ; Cartwright, Richard ; Cazaux, Stéphanie ; de Kleer, Katherine ; Fletcher, Leight N. ; Milby, Zachariah ; Moingeon, Audrey ; Mura, Alessandro ; Orton, Glenn S. ; Schmitt, Bernard ; Tosi, Federico ; Wong, Michael H.</creator><creatorcontrib>Bockelee-Morvan, Dominique ; Poch, Olivier ; Leblanc, François ; Zakharov, Vladimir ; Lellouch, Emmanuel ; Quirico, Eric ; de Pater, Imke ; Fouchet, Thierry ; Rodriguez-Ovalle, Pablo ; Roth, Lorenz ; Merlin, Frédéric ; Duling, Stefan ; Saur, Joachim ; Masson, Adrien ; Fry, Patrick ; Trumbo, Samantha ; Brown, Michael ; Cartwright, Richard ; Cazaux, Stéphanie ; de Kleer, Katherine ; Fletcher, Leight N. ; Milby, Zachariah ; Moingeon, Audrey ; Mura, Alessandro ; Orton, Glenn S. ; Schmitt, Bernard ; Tosi, Federico ; Wong, Michael H.</creatorcontrib><description>Jupiter's icy moon Ganymede has a tenuous exosphere produced by sputtering and possibly sublimation of water ice. To date, only atomic hydrogen and oxygen have been directly detected in this exosphere. Here, we present observations of Ganymede's CO 2 exosphere obtained with the James Webb Space Telescope. CO 2 gas is observed over different terrain types, mainly over those exposed to intense Jovian plasma irradiation, as well as over some bright or dark terrains. Despite warm surface temperatures, the CO 2 abundance over equatorial subsolar regions is low. CO 2 vapor has the highest abundance over the north polar cap of the leading hemisphere, reaching a surface pressure of 1 pbar. From modeling we show that the local enhancement observed near 12 h local time in this region can be explained by the presence of cold traps enabling CO 2 adsorption. However, whether the release mechanism in this high-latitude region is sputtering or sublimation remains unclear. The north polar cap of the leading hemisphere also has unique surface-ice properties, probably linked to the presence of the large atmospheric CO 2 excess over this region. These CO 2 molecules might have been initially released in the atmosphere after the radiolysis of CO 2 precursors, or from the sputtering of CO 2 embedded in the H 2 O ice bedrock. Dark terrains (regiones), more widespread on the north versus south polar regions, possibly harbor CO 2 precursors. CO 2 molecules would then be redistributed via cold trapping on ice-rich terrains of the polar cap and be diurnally released and redeposited on these terrains. Ganymede's CO 2 exosphere highlights the complexity of surface-atmosphere interactions on Jupiter's icy Galilean moons.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/202451599</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>Sciences of the Universe</subject><ispartof>Astronomy and astrophysics (Berlin), 2024-09, Vol.690 (October)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5548-3519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-04733988$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bockelee-Morvan, Dominique</creatorcontrib><creatorcontrib>Poch, Olivier</creatorcontrib><creatorcontrib>Leblanc, François</creatorcontrib><creatorcontrib>Zakharov, Vladimir</creatorcontrib><creatorcontrib>Lellouch, Emmanuel</creatorcontrib><creatorcontrib>Quirico, Eric</creatorcontrib><creatorcontrib>de Pater, Imke</creatorcontrib><creatorcontrib>Fouchet, Thierry</creatorcontrib><creatorcontrib>Rodriguez-Ovalle, Pablo</creatorcontrib><creatorcontrib>Roth, Lorenz</creatorcontrib><creatorcontrib>Merlin, Frédéric</creatorcontrib><creatorcontrib>Duling, Stefan</creatorcontrib><creatorcontrib>Saur, Joachim</creatorcontrib><creatorcontrib>Masson, Adrien</creatorcontrib><creatorcontrib>Fry, Patrick</creatorcontrib><creatorcontrib>Trumbo, Samantha</creatorcontrib><creatorcontrib>Brown, Michael</creatorcontrib><creatorcontrib>Cartwright, Richard</creatorcontrib><creatorcontrib>Cazaux, Stéphanie</creatorcontrib><creatorcontrib>de Kleer, Katherine</creatorcontrib><creatorcontrib>Fletcher, Leight N.</creatorcontrib><creatorcontrib>Milby, Zachariah</creatorcontrib><creatorcontrib>Moingeon, Audrey</creatorcontrib><creatorcontrib>Mura, Alessandro</creatorcontrib><creatorcontrib>Orton, Glenn S.</creatorcontrib><creatorcontrib>Schmitt, Bernard</creatorcontrib><creatorcontrib>Tosi, Federico</creatorcontrib><creatorcontrib>Wong, Michael H.</creatorcontrib><title>A patchy CO2 exosphere on Ganymede revealed by the James Webb Space Telescope</title><title>Astronomy and astrophysics (Berlin)</title><description>Jupiter's icy moon Ganymede has a tenuous exosphere produced by sputtering and possibly sublimation of water ice. To date, only atomic hydrogen and oxygen have been directly detected in this exosphere. Here, we present observations of Ganymede's CO 2 exosphere obtained with the James Webb Space Telescope. CO 2 gas is observed over different terrain types, mainly over those exposed to intense Jovian plasma irradiation, as well as over some bright or dark terrains. Despite warm surface temperatures, the CO 2 abundance over equatorial subsolar regions is low. CO 2 vapor has the highest abundance over the north polar cap of the leading hemisphere, reaching a surface pressure of 1 pbar. From modeling we show that the local enhancement observed near 12 h local time in this region can be explained by the presence of cold traps enabling CO 2 adsorption. However, whether the release mechanism in this high-latitude region is sputtering or sublimation remains unclear. The north polar cap of the leading hemisphere also has unique surface-ice properties, probably linked to the presence of the large atmospheric CO 2 excess over this region. These CO 2 molecules might have been initially released in the atmosphere after the radiolysis of CO 2 precursors, or from the sputtering of CO 2 embedded in the H 2 O ice bedrock. Dark terrains (regiones), more widespread on the north versus south polar regions, possibly harbor CO 2 precursors. CO 2 molecules would then be redistributed via cold trapping on ice-rich terrains of the polar cap and be diurnally released and redeposited on these terrains. Ganymede's CO 2 exosphere highlights the complexity of surface-atmosphere interactions on Jupiter's icy Galilean moons.</description><subject>Sciences of the Universe</subject><issn>0004-6361</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVjs1Kw0AURgdRsFafwM2shdh75y-TZSnaKpEurLgMM5MbEkmTkKnFvL0Fxb2rwweHj8PYLcI9gsYFAKjESIMLAUJp1Fl2xmaopEgg1eaczf6MS3YV48dpCrRyxl6WfHCHUE98tRWcvvo41DQS7zu-dt20p5L4SEdyLZXcT_xQE392e4r8nbznr4MLxHfUUgz9QNfsonJtpJtfztnb48NutUny7fpptcyTGrU-JM4HH1ChDs7YKoUKkTRaQ1J4e-oHTzpUGbhUGaktlF6lqCDFUoBxppRzdvfzW7u2GMZm78ap6F1TbJZ50XTxswCVSplZexT_kVF-A3TJXwY</recordid><startdate>20240927</startdate><enddate>20240927</enddate><creator>Bockelee-Morvan, Dominique</creator><creator>Poch, Olivier</creator><creator>Leblanc, François</creator><creator>Zakharov, Vladimir</creator><creator>Lellouch, Emmanuel</creator><creator>Quirico, Eric</creator><creator>de Pater, Imke</creator><creator>Fouchet, Thierry</creator><creator>Rodriguez-Ovalle, Pablo</creator><creator>Roth, Lorenz</creator><creator>Merlin, Frédéric</creator><creator>Duling, Stefan</creator><creator>Saur, Joachim</creator><creator>Masson, Adrien</creator><creator>Fry, Patrick</creator><creator>Trumbo, Samantha</creator><creator>Brown, Michael</creator><creator>Cartwright, Richard</creator><creator>Cazaux, Stéphanie</creator><creator>de Kleer, Katherine</creator><creator>Fletcher, Leight N.</creator><creator>Milby, Zachariah</creator><creator>Moingeon, Audrey</creator><creator>Mura, Alessandro</creator><creator>Orton, Glenn S.</creator><creator>Schmitt, Bernard</creator><creator>Tosi, Federico</creator><creator>Wong, Michael H.</creator><general>EDP Sciences</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5548-3519</orcidid></search><sort><creationdate>20240927</creationdate><title>A patchy CO2 exosphere on Ganymede revealed by the James Webb Space Telescope</title><author>Bockelee-Morvan, Dominique ; Poch, Olivier ; Leblanc, François ; Zakharov, Vladimir ; Lellouch, Emmanuel ; Quirico, Eric ; de Pater, Imke ; Fouchet, Thierry ; Rodriguez-Ovalle, Pablo ; Roth, Lorenz ; Merlin, Frédéric ; Duling, Stefan ; Saur, Joachim ; Masson, Adrien ; Fry, Patrick ; Trumbo, Samantha ; Brown, Michael ; Cartwright, Richard ; Cazaux, Stéphanie ; de Kleer, Katherine ; Fletcher, Leight N. ; Milby, Zachariah ; Moingeon, Audrey ; Mura, Alessandro ; Orton, Glenn S. ; Schmitt, Bernard ; Tosi, Federico ; Wong, Michael H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h155t-abcbc1415ca68f70f11e5186e32b82450be5cf90a7463580db4714071d206a6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bockelee-Morvan, Dominique</creatorcontrib><creatorcontrib>Poch, Olivier</creatorcontrib><creatorcontrib>Leblanc, François</creatorcontrib><creatorcontrib>Zakharov, Vladimir</creatorcontrib><creatorcontrib>Lellouch, Emmanuel</creatorcontrib><creatorcontrib>Quirico, Eric</creatorcontrib><creatorcontrib>de Pater, Imke</creatorcontrib><creatorcontrib>Fouchet, Thierry</creatorcontrib><creatorcontrib>Rodriguez-Ovalle, Pablo</creatorcontrib><creatorcontrib>Roth, Lorenz</creatorcontrib><creatorcontrib>Merlin, Frédéric</creatorcontrib><creatorcontrib>Duling, Stefan</creatorcontrib><creatorcontrib>Saur, Joachim</creatorcontrib><creatorcontrib>Masson, Adrien</creatorcontrib><creatorcontrib>Fry, Patrick</creatorcontrib><creatorcontrib>Trumbo, Samantha</creatorcontrib><creatorcontrib>Brown, Michael</creatorcontrib><creatorcontrib>Cartwright, Richard</creatorcontrib><creatorcontrib>Cazaux, Stéphanie</creatorcontrib><creatorcontrib>de Kleer, Katherine</creatorcontrib><creatorcontrib>Fletcher, Leight N.</creatorcontrib><creatorcontrib>Milby, Zachariah</creatorcontrib><creatorcontrib>Moingeon, Audrey</creatorcontrib><creatorcontrib>Mura, Alessandro</creatorcontrib><creatorcontrib>Orton, Glenn S.</creatorcontrib><creatorcontrib>Schmitt, Bernard</creatorcontrib><creatorcontrib>Tosi, Federico</creatorcontrib><creatorcontrib>Wong, Michael H.</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bockelee-Morvan, Dominique</au><au>Poch, Olivier</au><au>Leblanc, François</au><au>Zakharov, Vladimir</au><au>Lellouch, Emmanuel</au><au>Quirico, Eric</au><au>de Pater, Imke</au><au>Fouchet, Thierry</au><au>Rodriguez-Ovalle, Pablo</au><au>Roth, Lorenz</au><au>Merlin, Frédéric</au><au>Duling, Stefan</au><au>Saur, Joachim</au><au>Masson, Adrien</au><au>Fry, Patrick</au><au>Trumbo, Samantha</au><au>Brown, Michael</au><au>Cartwright, Richard</au><au>Cazaux, Stéphanie</au><au>de Kleer, Katherine</au><au>Fletcher, Leight N.</au><au>Milby, Zachariah</au><au>Moingeon, Audrey</au><au>Mura, Alessandro</au><au>Orton, Glenn S.</au><au>Schmitt, Bernard</au><au>Tosi, Federico</au><au>Wong, Michael H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A patchy CO2 exosphere on Ganymede revealed by the James Webb Space Telescope</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2024-09-27</date><risdate>2024</risdate><volume>690</volume><issue>October</issue><issn>0004-6361</issn><eissn>1432-0756</eissn><abstract>Jupiter's icy moon Ganymede has a tenuous exosphere produced by sputtering and possibly sublimation of water ice. To date, only atomic hydrogen and oxygen have been directly detected in this exosphere. Here, we present observations of Ganymede's CO 2 exosphere obtained with the James Webb Space Telescope. CO 2 gas is observed over different terrain types, mainly over those exposed to intense Jovian plasma irradiation, as well as over some bright or dark terrains. Despite warm surface temperatures, the CO 2 abundance over equatorial subsolar regions is low. CO 2 vapor has the highest abundance over the north polar cap of the leading hemisphere, reaching a surface pressure of 1 pbar. From modeling we show that the local enhancement observed near 12 h local time in this region can be explained by the presence of cold traps enabling CO 2 adsorption. However, whether the release mechanism in this high-latitude region is sputtering or sublimation remains unclear. The north polar cap of the leading hemisphere also has unique surface-ice properties, probably linked to the presence of the large atmospheric CO 2 excess over this region. These CO 2 molecules might have been initially released in the atmosphere after the radiolysis of CO 2 precursors, or from the sputtering of CO 2 embedded in the H 2 O ice bedrock. Dark terrains (regiones), more widespread on the north versus south polar regions, possibly harbor CO 2 precursors. CO 2 molecules would then be redistributed via cold trapping on ice-rich terrains of the polar cap and be diurnally released and redeposited on these terrains. Ganymede's CO 2 exosphere highlights the complexity of surface-atmosphere interactions on Jupiter's icy Galilean moons.</abstract><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202451599</doi><orcidid>https://orcid.org/0000-0002-5548-3519</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6361 |
ispartof | Astronomy and astrophysics (Berlin), 2024-09, Vol.690 (October) |
issn | 0004-6361 1432-0756 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_04733988v2 |
source | EZB Electronic Journals Library |
subjects | Sciences of the Universe |
title | A patchy CO2 exosphere on Ganymede revealed by the James Webb Space Telescope |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20patchy%20CO2%20exosphere%20on%20Ganymede%20revealed%20by%20the%20James%20Webb%20Space%20Telescope&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Bockelee-Morvan,%20Dominique&rft.date=2024-09-27&rft.volume=690&rft.issue=October&rft.issn=0004-6361&rft.eissn=1432-0756&rft_id=info:doi/10.1051/0004-6361/202451599&rft_dat=%3Chal%3Eoai_HAL_insu_04733988v2%3C/hal%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h155t-abcbc1415ca68f70f11e5186e32b82450be5cf90a7463580db4714071d206a6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |