Loading…

A patchy CO2 exosphere on Ganymede revealed by the James Webb Space Telescope

Jupiter's icy moon Ganymede has a tenuous exosphere produced by sputtering and possibly sublimation of water ice. To date, only atomic hydrogen and oxygen have been directly detected in this exosphere. Here, we present observations of Ganymede's CO 2 exosphere obtained with the James Webb...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy and astrophysics (Berlin) 2024-09, Vol.690 (October)
Main Authors: Bockelee-Morvan, Dominique, Poch, Olivier, Leblanc, François, Zakharov, Vladimir, Lellouch, Emmanuel, Quirico, Eric, de Pater, Imke, Fouchet, Thierry, Rodriguez-Ovalle, Pablo, Roth, Lorenz, Merlin, Frédéric, Duling, Stefan, Saur, Joachim, Masson, Adrien, Fry, Patrick, Trumbo, Samantha, Brown, Michael, Cartwright, Richard, Cazaux, Stéphanie, de Kleer, Katherine, Fletcher, Leight N., Milby, Zachariah, Moingeon, Audrey, Mura, Alessandro, Orton, Glenn S., Schmitt, Bernard, Tosi, Federico, Wong, Michael H.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue October
container_start_page
container_title Astronomy and astrophysics (Berlin)
container_volume 690
creator Bockelee-Morvan, Dominique
Poch, Olivier
Leblanc, François
Zakharov, Vladimir
Lellouch, Emmanuel
Quirico, Eric
de Pater, Imke
Fouchet, Thierry
Rodriguez-Ovalle, Pablo
Roth, Lorenz
Merlin, Frédéric
Duling, Stefan
Saur, Joachim
Masson, Adrien
Fry, Patrick
Trumbo, Samantha
Brown, Michael
Cartwright, Richard
Cazaux, Stéphanie
de Kleer, Katherine
Fletcher, Leight N.
Milby, Zachariah
Moingeon, Audrey
Mura, Alessandro
Orton, Glenn S.
Schmitt, Bernard
Tosi, Federico
Wong, Michael H.
description Jupiter's icy moon Ganymede has a tenuous exosphere produced by sputtering and possibly sublimation of water ice. To date, only atomic hydrogen and oxygen have been directly detected in this exosphere. Here, we present observations of Ganymede's CO 2 exosphere obtained with the James Webb Space Telescope. CO 2 gas is observed over different terrain types, mainly over those exposed to intense Jovian plasma irradiation, as well as over some bright or dark terrains. Despite warm surface temperatures, the CO 2 abundance over equatorial subsolar regions is low. CO 2 vapor has the highest abundance over the north polar cap of the leading hemisphere, reaching a surface pressure of 1 pbar. From modeling we show that the local enhancement observed near 12 h local time in this region can be explained by the presence of cold traps enabling CO 2 adsorption. However, whether the release mechanism in this high-latitude region is sputtering or sublimation remains unclear. The north polar cap of the leading hemisphere also has unique surface-ice properties, probably linked to the presence of the large atmospheric CO 2 excess over this region. These CO 2 molecules might have been initially released in the atmosphere after the radiolysis of CO 2 precursors, or from the sputtering of CO 2 embedded in the H 2 O ice bedrock. Dark terrains (regiones), more widespread on the north versus south polar regions, possibly harbor CO 2 precursors. CO 2 molecules would then be redistributed via cold trapping on ice-rich terrains of the polar cap and be diurnally released and redeposited on these terrains. Ganymede's CO 2 exosphere highlights the complexity of surface-atmosphere interactions on Jupiter's icy Galilean moons.
doi_str_mv 10.1051/0004-6361/202451599
format article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_04733988v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_insu_04733988v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-h155t-abcbc1415ca68f70f11e5186e32b82450be5cf90a7463580db4714071d206a6d3</originalsourceid><addsrcrecordid>eNqVjs1Kw0AURgdRsFafwM2shdh75y-TZSnaKpEurLgMM5MbEkmTkKnFvL0Fxb2rwweHj8PYLcI9gsYFAKjESIMLAUJp1Fl2xmaopEgg1eaczf6MS3YV48dpCrRyxl6WfHCHUE98tRWcvvo41DQS7zu-dt20p5L4SEdyLZXcT_xQE392e4r8nbznr4MLxHfUUgz9QNfsonJtpJtfztnb48NutUny7fpptcyTGrU-JM4HH1ChDs7YKoUKkTRaQ1J4e-oHTzpUGbhUGaktlF6lqCDFUoBxppRzdvfzW7u2GMZm78ap6F1TbJZ50XTxswCVSplZexT_kVF-A3TJXwY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A patchy CO2 exosphere on Ganymede revealed by the James Webb Space Telescope</title><source>EZB Electronic Journals Library</source><creator>Bockelee-Morvan, Dominique ; Poch, Olivier ; Leblanc, François ; Zakharov, Vladimir ; Lellouch, Emmanuel ; Quirico, Eric ; de Pater, Imke ; Fouchet, Thierry ; Rodriguez-Ovalle, Pablo ; Roth, Lorenz ; Merlin, Frédéric ; Duling, Stefan ; Saur, Joachim ; Masson, Adrien ; Fry, Patrick ; Trumbo, Samantha ; Brown, Michael ; Cartwright, Richard ; Cazaux, Stéphanie ; de Kleer, Katherine ; Fletcher, Leight N. ; Milby, Zachariah ; Moingeon, Audrey ; Mura, Alessandro ; Orton, Glenn S. ; Schmitt, Bernard ; Tosi, Federico ; Wong, Michael H.</creator><creatorcontrib>Bockelee-Morvan, Dominique ; Poch, Olivier ; Leblanc, François ; Zakharov, Vladimir ; Lellouch, Emmanuel ; Quirico, Eric ; de Pater, Imke ; Fouchet, Thierry ; Rodriguez-Ovalle, Pablo ; Roth, Lorenz ; Merlin, Frédéric ; Duling, Stefan ; Saur, Joachim ; Masson, Adrien ; Fry, Patrick ; Trumbo, Samantha ; Brown, Michael ; Cartwright, Richard ; Cazaux, Stéphanie ; de Kleer, Katherine ; Fletcher, Leight N. ; Milby, Zachariah ; Moingeon, Audrey ; Mura, Alessandro ; Orton, Glenn S. ; Schmitt, Bernard ; Tosi, Federico ; Wong, Michael H.</creatorcontrib><description>Jupiter's icy moon Ganymede has a tenuous exosphere produced by sputtering and possibly sublimation of water ice. To date, only atomic hydrogen and oxygen have been directly detected in this exosphere. Here, we present observations of Ganymede's CO 2 exosphere obtained with the James Webb Space Telescope. CO 2 gas is observed over different terrain types, mainly over those exposed to intense Jovian plasma irradiation, as well as over some bright or dark terrains. Despite warm surface temperatures, the CO 2 abundance over equatorial subsolar regions is low. CO 2 vapor has the highest abundance over the north polar cap of the leading hemisphere, reaching a surface pressure of 1 pbar. From modeling we show that the local enhancement observed near 12 h local time in this region can be explained by the presence of cold traps enabling CO 2 adsorption. However, whether the release mechanism in this high-latitude region is sputtering or sublimation remains unclear. The north polar cap of the leading hemisphere also has unique surface-ice properties, probably linked to the presence of the large atmospheric CO 2 excess over this region. These CO 2 molecules might have been initially released in the atmosphere after the radiolysis of CO 2 precursors, or from the sputtering of CO 2 embedded in the H 2 O ice bedrock. Dark terrains (regiones), more widespread on the north versus south polar regions, possibly harbor CO 2 precursors. CO 2 molecules would then be redistributed via cold trapping on ice-rich terrains of the polar cap and be diurnally released and redeposited on these terrains. Ganymede's CO 2 exosphere highlights the complexity of surface-atmosphere interactions on Jupiter's icy Galilean moons.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/202451599</identifier><language>eng</language><publisher>EDP Sciences</publisher><subject>Sciences of the Universe</subject><ispartof>Astronomy and astrophysics (Berlin), 2024-09, Vol.690 (October)</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-5548-3519</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-04733988$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bockelee-Morvan, Dominique</creatorcontrib><creatorcontrib>Poch, Olivier</creatorcontrib><creatorcontrib>Leblanc, François</creatorcontrib><creatorcontrib>Zakharov, Vladimir</creatorcontrib><creatorcontrib>Lellouch, Emmanuel</creatorcontrib><creatorcontrib>Quirico, Eric</creatorcontrib><creatorcontrib>de Pater, Imke</creatorcontrib><creatorcontrib>Fouchet, Thierry</creatorcontrib><creatorcontrib>Rodriguez-Ovalle, Pablo</creatorcontrib><creatorcontrib>Roth, Lorenz</creatorcontrib><creatorcontrib>Merlin, Frédéric</creatorcontrib><creatorcontrib>Duling, Stefan</creatorcontrib><creatorcontrib>Saur, Joachim</creatorcontrib><creatorcontrib>Masson, Adrien</creatorcontrib><creatorcontrib>Fry, Patrick</creatorcontrib><creatorcontrib>Trumbo, Samantha</creatorcontrib><creatorcontrib>Brown, Michael</creatorcontrib><creatorcontrib>Cartwright, Richard</creatorcontrib><creatorcontrib>Cazaux, Stéphanie</creatorcontrib><creatorcontrib>de Kleer, Katherine</creatorcontrib><creatorcontrib>Fletcher, Leight N.</creatorcontrib><creatorcontrib>Milby, Zachariah</creatorcontrib><creatorcontrib>Moingeon, Audrey</creatorcontrib><creatorcontrib>Mura, Alessandro</creatorcontrib><creatorcontrib>Orton, Glenn S.</creatorcontrib><creatorcontrib>Schmitt, Bernard</creatorcontrib><creatorcontrib>Tosi, Federico</creatorcontrib><creatorcontrib>Wong, Michael H.</creatorcontrib><title>A patchy CO2 exosphere on Ganymede revealed by the James Webb Space Telescope</title><title>Astronomy and astrophysics (Berlin)</title><description>Jupiter's icy moon Ganymede has a tenuous exosphere produced by sputtering and possibly sublimation of water ice. To date, only atomic hydrogen and oxygen have been directly detected in this exosphere. Here, we present observations of Ganymede's CO 2 exosphere obtained with the James Webb Space Telescope. CO 2 gas is observed over different terrain types, mainly over those exposed to intense Jovian plasma irradiation, as well as over some bright or dark terrains. Despite warm surface temperatures, the CO 2 abundance over equatorial subsolar regions is low. CO 2 vapor has the highest abundance over the north polar cap of the leading hemisphere, reaching a surface pressure of 1 pbar. From modeling we show that the local enhancement observed near 12 h local time in this region can be explained by the presence of cold traps enabling CO 2 adsorption. However, whether the release mechanism in this high-latitude region is sputtering or sublimation remains unclear. The north polar cap of the leading hemisphere also has unique surface-ice properties, probably linked to the presence of the large atmospheric CO 2 excess over this region. These CO 2 molecules might have been initially released in the atmosphere after the radiolysis of CO 2 precursors, or from the sputtering of CO 2 embedded in the H 2 O ice bedrock. Dark terrains (regiones), more widespread on the north versus south polar regions, possibly harbor CO 2 precursors. CO 2 molecules would then be redistributed via cold trapping on ice-rich terrains of the polar cap and be diurnally released and redeposited on these terrains. Ganymede's CO 2 exosphere highlights the complexity of surface-atmosphere interactions on Jupiter's icy Galilean moons.</description><subject>Sciences of the Universe</subject><issn>0004-6361</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNqVjs1Kw0AURgdRsFafwM2shdh75y-TZSnaKpEurLgMM5MbEkmTkKnFvL0Fxb2rwweHj8PYLcI9gsYFAKjESIMLAUJp1Fl2xmaopEgg1eaczf6MS3YV48dpCrRyxl6WfHCHUE98tRWcvvo41DQS7zu-dt20p5L4SEdyLZXcT_xQE392e4r8nbznr4MLxHfUUgz9QNfsonJtpJtfztnb48NutUny7fpptcyTGrU-JM4HH1ChDs7YKoUKkTRaQ1J4e-oHTzpUGbhUGaktlF6lqCDFUoBxppRzdvfzW7u2GMZm78ap6F1TbJZ50XTxswCVSplZexT_kVF-A3TJXwY</recordid><startdate>20240927</startdate><enddate>20240927</enddate><creator>Bockelee-Morvan, Dominique</creator><creator>Poch, Olivier</creator><creator>Leblanc, François</creator><creator>Zakharov, Vladimir</creator><creator>Lellouch, Emmanuel</creator><creator>Quirico, Eric</creator><creator>de Pater, Imke</creator><creator>Fouchet, Thierry</creator><creator>Rodriguez-Ovalle, Pablo</creator><creator>Roth, Lorenz</creator><creator>Merlin, Frédéric</creator><creator>Duling, Stefan</creator><creator>Saur, Joachim</creator><creator>Masson, Adrien</creator><creator>Fry, Patrick</creator><creator>Trumbo, Samantha</creator><creator>Brown, Michael</creator><creator>Cartwright, Richard</creator><creator>Cazaux, Stéphanie</creator><creator>de Kleer, Katherine</creator><creator>Fletcher, Leight N.</creator><creator>Milby, Zachariah</creator><creator>Moingeon, Audrey</creator><creator>Mura, Alessandro</creator><creator>Orton, Glenn S.</creator><creator>Schmitt, Bernard</creator><creator>Tosi, Federico</creator><creator>Wong, Michael H.</creator><general>EDP Sciences</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5548-3519</orcidid></search><sort><creationdate>20240927</creationdate><title>A patchy CO2 exosphere on Ganymede revealed by the James Webb Space Telescope</title><author>Bockelee-Morvan, Dominique ; Poch, Olivier ; Leblanc, François ; Zakharov, Vladimir ; Lellouch, Emmanuel ; Quirico, Eric ; de Pater, Imke ; Fouchet, Thierry ; Rodriguez-Ovalle, Pablo ; Roth, Lorenz ; Merlin, Frédéric ; Duling, Stefan ; Saur, Joachim ; Masson, Adrien ; Fry, Patrick ; Trumbo, Samantha ; Brown, Michael ; Cartwright, Richard ; Cazaux, Stéphanie ; de Kleer, Katherine ; Fletcher, Leight N. ; Milby, Zachariah ; Moingeon, Audrey ; Mura, Alessandro ; Orton, Glenn S. ; Schmitt, Bernard ; Tosi, Federico ; Wong, Michael H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h155t-abcbc1415ca68f70f11e5186e32b82450be5cf90a7463580db4714071d206a6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Sciences of the Universe</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bockelee-Morvan, Dominique</creatorcontrib><creatorcontrib>Poch, Olivier</creatorcontrib><creatorcontrib>Leblanc, François</creatorcontrib><creatorcontrib>Zakharov, Vladimir</creatorcontrib><creatorcontrib>Lellouch, Emmanuel</creatorcontrib><creatorcontrib>Quirico, Eric</creatorcontrib><creatorcontrib>de Pater, Imke</creatorcontrib><creatorcontrib>Fouchet, Thierry</creatorcontrib><creatorcontrib>Rodriguez-Ovalle, Pablo</creatorcontrib><creatorcontrib>Roth, Lorenz</creatorcontrib><creatorcontrib>Merlin, Frédéric</creatorcontrib><creatorcontrib>Duling, Stefan</creatorcontrib><creatorcontrib>Saur, Joachim</creatorcontrib><creatorcontrib>Masson, Adrien</creatorcontrib><creatorcontrib>Fry, Patrick</creatorcontrib><creatorcontrib>Trumbo, Samantha</creatorcontrib><creatorcontrib>Brown, Michael</creatorcontrib><creatorcontrib>Cartwright, Richard</creatorcontrib><creatorcontrib>Cazaux, Stéphanie</creatorcontrib><creatorcontrib>de Kleer, Katherine</creatorcontrib><creatorcontrib>Fletcher, Leight N.</creatorcontrib><creatorcontrib>Milby, Zachariah</creatorcontrib><creatorcontrib>Moingeon, Audrey</creatorcontrib><creatorcontrib>Mura, Alessandro</creatorcontrib><creatorcontrib>Orton, Glenn S.</creatorcontrib><creatorcontrib>Schmitt, Bernard</creatorcontrib><creatorcontrib>Tosi, Federico</creatorcontrib><creatorcontrib>Wong, Michael H.</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bockelee-Morvan, Dominique</au><au>Poch, Olivier</au><au>Leblanc, François</au><au>Zakharov, Vladimir</au><au>Lellouch, Emmanuel</au><au>Quirico, Eric</au><au>de Pater, Imke</au><au>Fouchet, Thierry</au><au>Rodriguez-Ovalle, Pablo</au><au>Roth, Lorenz</au><au>Merlin, Frédéric</au><au>Duling, Stefan</au><au>Saur, Joachim</au><au>Masson, Adrien</au><au>Fry, Patrick</au><au>Trumbo, Samantha</au><au>Brown, Michael</au><au>Cartwright, Richard</au><au>Cazaux, Stéphanie</au><au>de Kleer, Katherine</au><au>Fletcher, Leight N.</au><au>Milby, Zachariah</au><au>Moingeon, Audrey</au><au>Mura, Alessandro</au><au>Orton, Glenn S.</au><au>Schmitt, Bernard</au><au>Tosi, Federico</au><au>Wong, Michael H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A patchy CO2 exosphere on Ganymede revealed by the James Webb Space Telescope</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2024-09-27</date><risdate>2024</risdate><volume>690</volume><issue>October</issue><issn>0004-6361</issn><eissn>1432-0756</eissn><abstract>Jupiter's icy moon Ganymede has a tenuous exosphere produced by sputtering and possibly sublimation of water ice. To date, only atomic hydrogen and oxygen have been directly detected in this exosphere. Here, we present observations of Ganymede's CO 2 exosphere obtained with the James Webb Space Telescope. CO 2 gas is observed over different terrain types, mainly over those exposed to intense Jovian plasma irradiation, as well as over some bright or dark terrains. Despite warm surface temperatures, the CO 2 abundance over equatorial subsolar regions is low. CO 2 vapor has the highest abundance over the north polar cap of the leading hemisphere, reaching a surface pressure of 1 pbar. From modeling we show that the local enhancement observed near 12 h local time in this region can be explained by the presence of cold traps enabling CO 2 adsorption. However, whether the release mechanism in this high-latitude region is sputtering or sublimation remains unclear. The north polar cap of the leading hemisphere also has unique surface-ice properties, probably linked to the presence of the large atmospheric CO 2 excess over this region. These CO 2 molecules might have been initially released in the atmosphere after the radiolysis of CO 2 precursors, or from the sputtering of CO 2 embedded in the H 2 O ice bedrock. Dark terrains (regiones), more widespread on the north versus south polar regions, possibly harbor CO 2 precursors. CO 2 molecules would then be redistributed via cold trapping on ice-rich terrains of the polar cap and be diurnally released and redeposited on these terrains. Ganymede's CO 2 exosphere highlights the complexity of surface-atmosphere interactions on Jupiter's icy Galilean moons.</abstract><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202451599</doi><orcidid>https://orcid.org/0000-0002-5548-3519</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2024-09, Vol.690 (October)
issn 0004-6361
1432-0756
language eng
recordid cdi_hal_primary_oai_HAL_insu_04733988v2
source EZB Electronic Journals Library
subjects Sciences of the Universe
title A patchy CO2 exosphere on Ganymede revealed by the James Webb Space Telescope
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20patchy%20CO2%20exosphere%20on%20Ganymede%20revealed%20by%20the%20James%20Webb%20Space%20Telescope&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Bockelee-Morvan,%20Dominique&rft.date=2024-09-27&rft.volume=690&rft.issue=October&rft.issn=0004-6361&rft.eissn=1432-0756&rft_id=info:doi/10.1051/0004-6361/202451599&rft_dat=%3Chal%3Eoai_HAL_insu_04733988v2%3C/hal%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h155t-abcbc1415ca68f70f11e5186e32b82450be5cf90a7463580db4714071d206a6d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true