Loading…
Deuterium fractionation of the starless core L 1498
Context . Molecular deuteration is commonly seen in starless cores and is expected to occur on a timescale comparable to that of the core contraction. Thus, the deuteration serves as a chemical clock, allowing us to investigate dynamical theories of core formation. Aims . We aim to provide a 3D clou...
Saved in:
Published in: | Astronomy and astrophysics (Berlin) 2024-08, Vol.688, p.A118 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c237t-8645557ed27c8a7b007ebdf3a7764eb1e1529d7be36b310b1f1b195f9c64f6e73 |
container_end_page | |
container_issue | |
container_start_page | A118 |
container_title | Astronomy and astrophysics (Berlin) |
container_volume | 688 |
creator | Lin, Sheng-Jun Lai, Shih-Ping Pagani, Laurent Lefèvre, Charlène Thieme, Travis J. |
description | Context . Molecular deuteration is commonly seen in starless cores and is expected to occur on a timescale comparable to that of the core contraction. Thus, the deuteration serves as a chemical clock, allowing us to investigate dynamical theories of core formation.
Aims . We aim to provide a 3D cloud description for the starless core L 1498 located in the nearby low-mass star-forming region Taurus and explore its possible core formation mechanism.
Methods . We carried out nonlocal thermal equilibrium radiative transfer with multi-transition observations of the high-density tracer N 2 H + to derive the density and temperature profiles of the L 1498 core. By combining these observations with the spectral observations of the deuterated species, ortho-H 2 D + , N 2 D + , and DCO + , we derived the abundance profiles for the observed species and performed chemical modeling of the deuteration profiles across L 1498 to constrain the contraction timescale.
Results . We present the first ortho-H 2 D + (1 10 −1 11 ) detection toward L 1498. We find a peak molecular hydrogen density of 1.6 −0.3 +3.0 × 10 5 cm −3 , a temperature of 7.5 −0.5 +0.7 K, and a N 2 H + deuteration of 0.27 −0.15 +0.12 in the center.
Conclusions . We derived a lower limit of the core age for L 1498 of 0.16 Ma, which is compatible with the typical free-fall time, indicating that L 1498 likely formed rapidly. |
doi_str_mv | 10.1051/0004-6361/202348529 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_04822450v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094487575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-8645557ed27c8a7b007ebdf3a7764eb1e1529d7be36b310b1f1b195f9c64f6e73</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFZ_gZuAOyH23nlnWeqjQsCNroeZdIamtJ06kwj-exMi3dzDhY_D4SPkHuEJQeACAHgpmcQFBcq4FrS6IDPkjJaguLwkszNxTW5y3g0vRc1mhD37vvOp7Q9FSLbp2ni04yliKLqtL3Jn097nXDQx-aIukFf6llwFu8_-7j_n5Ov15XO1LuuPt_fVsi4bylRXasmFEMpvqGq0VQ5AebcJzColuXfocZi5Uc4z6RiCw4AOKxGqRvIgvWJz8jj1bu3enFJ7sOnXRNua9bI27TH3BrimlAv4wQF-mOBTit-9z53ZxT4dh32GQcW5VkKJgWIT1aSYc_Lh3ItgRpVmFGVGUeaskv0Bc3hjKw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094487575</pqid></control><display><type>article</type><title>Deuterium fractionation of the starless core L 1498</title><source>EZB Electronic Journals Library</source><creator>Lin, Sheng-Jun ; Lai, Shih-Ping ; Pagani, Laurent ; Lefèvre, Charlène ; Thieme, Travis J.</creator><creatorcontrib>Lin, Sheng-Jun ; Lai, Shih-Ping ; Pagani, Laurent ; Lefèvre, Charlène ; Thieme, Travis J.</creatorcontrib><description>Context . Molecular deuteration is commonly seen in starless cores and is expected to occur on a timescale comparable to that of the core contraction. Thus, the deuteration serves as a chemical clock, allowing us to investigate dynamical theories of core formation.
Aims . We aim to provide a 3D cloud description for the starless core L 1498 located in the nearby low-mass star-forming region Taurus and explore its possible core formation mechanism.
Methods . We carried out nonlocal thermal equilibrium radiative transfer with multi-transition observations of the high-density tracer N 2 H + to derive the density and temperature profiles of the L 1498 core. By combining these observations with the spectral observations of the deuterated species, ortho-H 2 D + , N 2 D + , and DCO + , we derived the abundance profiles for the observed species and performed chemical modeling of the deuteration profiles across L 1498 to constrain the contraction timescale.
Results . We present the first ortho-H 2 D + (1 10 −1 11 ) detection toward L 1498. We find a peak molecular hydrogen density of 1.6 −0.3 +3.0 × 10 5 cm −3 , a temperature of 7.5 −0.5 +0.7 K, and a N 2 H + deuteration of 0.27 −0.15 +0.12 in the center.
Conclusions . We derived a lower limit of the core age for L 1498 of 0.16 Ma, which is compatible with the typical free-fall time, indicating that L 1498 likely formed rapidly.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/202348529</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Astrochemistry ; Density ; Deuteration ; Deuterium ; Fractionation ; Low mass stars ; Radiative transfer ; Sciences of the Universe ; Star formation ; Temperature profiles ; Time</subject><ispartof>Astronomy and astrophysics (Berlin), 2024-08, Vol.688, p.A118</ispartof><rights>2024. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c237t-8645557ed27c8a7b007ebdf3a7764eb1e1529d7be36b310b1f1b195f9c64f6e73</cites><orcidid>0000-0001-7349-6113 ; 0000-0001-5522-486X ; 0000-0002-6868-4483 ; 0000-0003-0334-1583 ; 0000-0002-3319-1021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-04822450$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Sheng-Jun</creatorcontrib><creatorcontrib>Lai, Shih-Ping</creatorcontrib><creatorcontrib>Pagani, Laurent</creatorcontrib><creatorcontrib>Lefèvre, Charlène</creatorcontrib><creatorcontrib>Thieme, Travis J.</creatorcontrib><title>Deuterium fractionation of the starless core L 1498</title><title>Astronomy and astrophysics (Berlin)</title><description>Context . Molecular deuteration is commonly seen in starless cores and is expected to occur on a timescale comparable to that of the core contraction. Thus, the deuteration serves as a chemical clock, allowing us to investigate dynamical theories of core formation.
Aims . We aim to provide a 3D cloud description for the starless core L 1498 located in the nearby low-mass star-forming region Taurus and explore its possible core formation mechanism.
Methods . We carried out nonlocal thermal equilibrium radiative transfer with multi-transition observations of the high-density tracer N 2 H + to derive the density and temperature profiles of the L 1498 core. By combining these observations with the spectral observations of the deuterated species, ortho-H 2 D + , N 2 D + , and DCO + , we derived the abundance profiles for the observed species and performed chemical modeling of the deuteration profiles across L 1498 to constrain the contraction timescale.
Results . We present the first ortho-H 2 D + (1 10 −1 11 ) detection toward L 1498. We find a peak molecular hydrogen density of 1.6 −0.3 +3.0 × 10 5 cm −3 , a temperature of 7.5 −0.5 +0.7 K, and a N 2 H + deuteration of 0.27 −0.15 +0.12 in the center.
Conclusions . We derived a lower limit of the core age for L 1498 of 0.16 Ma, which is compatible with the typical free-fall time, indicating that L 1498 likely formed rapidly.</description><subject>Astrochemistry</subject><subject>Density</subject><subject>Deuteration</subject><subject>Deuterium</subject><subject>Fractionation</subject><subject>Low mass stars</subject><subject>Radiative transfer</subject><subject>Sciences of the Universe</subject><subject>Star formation</subject><subject>Temperature profiles</subject><subject>Time</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsFZ_gZuAOyH23nlnWeqjQsCNroeZdIamtJ06kwj-exMi3dzDhY_D4SPkHuEJQeACAHgpmcQFBcq4FrS6IDPkjJaguLwkszNxTW5y3g0vRc1mhD37vvOp7Q9FSLbp2ni04yliKLqtL3Jn097nXDQx-aIukFf6llwFu8_-7j_n5Ov15XO1LuuPt_fVsi4bylRXasmFEMpvqGq0VQ5AebcJzColuXfocZi5Uc4z6RiCw4AOKxGqRvIgvWJz8jj1bu3enFJ7sOnXRNua9bI27TH3BrimlAv4wQF-mOBTit-9z53ZxT4dh32GQcW5VkKJgWIT1aSYc_Lh3ItgRpVmFGVGUeaskv0Bc3hjKw</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Lin, Sheng-Jun</creator><creator>Lai, Shih-Ping</creator><creator>Pagani, Laurent</creator><creator>Lefèvre, Charlène</creator><creator>Thieme, Travis J.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7349-6113</orcidid><orcidid>https://orcid.org/0000-0001-5522-486X</orcidid><orcidid>https://orcid.org/0000-0002-6868-4483</orcidid><orcidid>https://orcid.org/0000-0003-0334-1583</orcidid><orcidid>https://orcid.org/0000-0002-3319-1021</orcidid></search><sort><creationdate>20240801</creationdate><title>Deuterium fractionation of the starless core L 1498</title><author>Lin, Sheng-Jun ; Lai, Shih-Ping ; Pagani, Laurent ; Lefèvre, Charlène ; Thieme, Travis J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-8645557ed27c8a7b007ebdf3a7764eb1e1529d7be36b310b1f1b195f9c64f6e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astrochemistry</topic><topic>Density</topic><topic>Deuteration</topic><topic>Deuterium</topic><topic>Fractionation</topic><topic>Low mass stars</topic><topic>Radiative transfer</topic><topic>Sciences of the Universe</topic><topic>Star formation</topic><topic>Temperature profiles</topic><topic>Time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Sheng-Jun</creatorcontrib><creatorcontrib>Lai, Shih-Ping</creatorcontrib><creatorcontrib>Pagani, Laurent</creatorcontrib><creatorcontrib>Lefèvre, Charlène</creatorcontrib><creatorcontrib>Thieme, Travis J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Sheng-Jun</au><au>Lai, Shih-Ping</au><au>Pagani, Laurent</au><au>Lefèvre, Charlène</au><au>Thieme, Travis J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deuterium fractionation of the starless core L 1498</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>688</volume><spage>A118</spage><pages>A118-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>Context . Molecular deuteration is commonly seen in starless cores and is expected to occur on a timescale comparable to that of the core contraction. Thus, the deuteration serves as a chemical clock, allowing us to investigate dynamical theories of core formation.
Aims . We aim to provide a 3D cloud description for the starless core L 1498 located in the nearby low-mass star-forming region Taurus and explore its possible core formation mechanism.
Methods . We carried out nonlocal thermal equilibrium radiative transfer with multi-transition observations of the high-density tracer N 2 H + to derive the density and temperature profiles of the L 1498 core. By combining these observations with the spectral observations of the deuterated species, ortho-H 2 D + , N 2 D + , and DCO + , we derived the abundance profiles for the observed species and performed chemical modeling of the deuteration profiles across L 1498 to constrain the contraction timescale.
Results . We present the first ortho-H 2 D + (1 10 −1 11 ) detection toward L 1498. We find a peak molecular hydrogen density of 1.6 −0.3 +3.0 × 10 5 cm −3 , a temperature of 7.5 −0.5 +0.7 K, and a N 2 H + deuteration of 0.27 −0.15 +0.12 in the center.
Conclusions . We derived a lower limit of the core age for L 1498 of 0.16 Ma, which is compatible with the typical free-fall time, indicating that L 1498 likely formed rapidly.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202348529</doi><orcidid>https://orcid.org/0000-0001-7349-6113</orcidid><orcidid>https://orcid.org/0000-0001-5522-486X</orcidid><orcidid>https://orcid.org/0000-0002-6868-4483</orcidid><orcidid>https://orcid.org/0000-0003-0334-1583</orcidid><orcidid>https://orcid.org/0000-0002-3319-1021</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-6361 |
ispartof | Astronomy and astrophysics (Berlin), 2024-08, Vol.688, p.A118 |
issn | 0004-6361 1432-0746 1432-0756 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_insu_04822450v1 |
source | EZB Electronic Journals Library |
subjects | Astrochemistry Density Deuteration Deuterium Fractionation Low mass stars Radiative transfer Sciences of the Universe Star formation Temperature profiles Time |
title | Deuterium fractionation of the starless core L 1498 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deuterium%20fractionation%20of%20the%20starless%20core%20L%201498&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Lin,%20Sheng-Jun&rft.date=2024-08-01&rft.volume=688&rft.spage=A118&rft.pages=A118-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202348529&rft_dat=%3Cproquest_hal_p%3E3094487575%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c237t-8645557ed27c8a7b007ebdf3a7764eb1e1529d7be36b310b1f1b195f9c64f6e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3094487575&rft_id=info:pmid/&rfr_iscdi=true |