Loading…

Deuterium fractionation of the starless core L 1498

Context . Molecular deuteration is commonly seen in starless cores and is expected to occur on a timescale comparable to that of the core contraction. Thus, the deuteration serves as a chemical clock, allowing us to investigate dynamical theories of core formation. Aims . We aim to provide a 3D clou...

Full description

Saved in:
Bibliographic Details
Published in:Astronomy and astrophysics (Berlin) 2024-08, Vol.688, p.A118
Main Authors: Lin, Sheng-Jun, Lai, Shih-Ping, Pagani, Laurent, Lefèvre, Charlène, Thieme, Travis J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c237t-8645557ed27c8a7b007ebdf3a7764eb1e1529d7be36b310b1f1b195f9c64f6e73
container_end_page
container_issue
container_start_page A118
container_title Astronomy and astrophysics (Berlin)
container_volume 688
creator Lin, Sheng-Jun
Lai, Shih-Ping
Pagani, Laurent
Lefèvre, Charlène
Thieme, Travis J.
description Context . Molecular deuteration is commonly seen in starless cores and is expected to occur on a timescale comparable to that of the core contraction. Thus, the deuteration serves as a chemical clock, allowing us to investigate dynamical theories of core formation. Aims . We aim to provide a 3D cloud description for the starless core L 1498 located in the nearby low-mass star-forming region Taurus and explore its possible core formation mechanism. Methods . We carried out nonlocal thermal equilibrium radiative transfer with multi-transition observations of the high-density tracer N 2 H + to derive the density and temperature profiles of the L 1498 core. By combining these observations with the spectral observations of the deuterated species, ortho-H 2 D + , N 2 D + , and DCO + , we derived the abundance profiles for the observed species and performed chemical modeling of the deuteration profiles across L 1498 to constrain the contraction timescale. Results . We present the first ortho-H 2 D + (1 10 −1 11 ) detection toward L 1498. We find a peak molecular hydrogen density of 1.6 −0.3 +3.0 × 10 5 cm −3 , a temperature of 7.5 −0.5 +0.7 K, and a N 2 H + deuteration of 0.27 −0.15 +0.12 in the center. Conclusions . We derived a lower limit of the core age for L 1498 of 0.16 Ma, which is compatible with the typical free-fall time, indicating that L 1498 likely formed rapidly.
doi_str_mv 10.1051/0004-6361/202348529
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_insu_04822450v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3094487575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c237t-8645557ed27c8a7b007ebdf3a7764eb1e1529d7be36b310b1f1b195f9c64f6e73</originalsourceid><addsrcrecordid>eNo9kEtLw0AUhQdRsFZ_gZuAOyH23nlnWeqjQsCNroeZdIamtJ06kwj-exMi3dzDhY_D4SPkHuEJQeACAHgpmcQFBcq4FrS6IDPkjJaguLwkszNxTW5y3g0vRc1mhD37vvOp7Q9FSLbp2ni04yliKLqtL3Jn097nXDQx-aIukFf6llwFu8_-7j_n5Ov15XO1LuuPt_fVsi4bylRXasmFEMpvqGq0VQ5AebcJzColuXfocZi5Uc4z6RiCw4AOKxGqRvIgvWJz8jj1bu3enFJ7sOnXRNua9bI27TH3BrimlAv4wQF-mOBTit-9z53ZxT4dh32GQcW5VkKJgWIT1aSYc_Lh3ItgRpVmFGVGUeaskv0Bc3hjKw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3094487575</pqid></control><display><type>article</type><title>Deuterium fractionation of the starless core L 1498</title><source>EZB Electronic Journals Library</source><creator>Lin, Sheng-Jun ; Lai, Shih-Ping ; Pagani, Laurent ; Lefèvre, Charlène ; Thieme, Travis J.</creator><creatorcontrib>Lin, Sheng-Jun ; Lai, Shih-Ping ; Pagani, Laurent ; Lefèvre, Charlène ; Thieme, Travis J.</creatorcontrib><description>Context . Molecular deuteration is commonly seen in starless cores and is expected to occur on a timescale comparable to that of the core contraction. Thus, the deuteration serves as a chemical clock, allowing us to investigate dynamical theories of core formation. Aims . We aim to provide a 3D cloud description for the starless core L 1498 located in the nearby low-mass star-forming region Taurus and explore its possible core formation mechanism. Methods . We carried out nonlocal thermal equilibrium radiative transfer with multi-transition observations of the high-density tracer N 2 H + to derive the density and temperature profiles of the L 1498 core. By combining these observations with the spectral observations of the deuterated species, ortho-H 2 D + , N 2 D + , and DCO + , we derived the abundance profiles for the observed species and performed chemical modeling of the deuteration profiles across L 1498 to constrain the contraction timescale. Results . We present the first ortho-H 2 D + (1 10 −1 11 ) detection toward L 1498. We find a peak molecular hydrogen density of 1.6 −0.3 +3.0 × 10 5 cm −3 , a temperature of 7.5 −0.5 +0.7 K, and a N 2 H + deuteration of 0.27 −0.15 +0.12 in the center. Conclusions . We derived a lower limit of the core age for L 1498 of 0.16 Ma, which is compatible with the typical free-fall time, indicating that L 1498 likely formed rapidly.</description><identifier>ISSN: 0004-6361</identifier><identifier>EISSN: 1432-0746</identifier><identifier>EISSN: 1432-0756</identifier><identifier>DOI: 10.1051/0004-6361/202348529</identifier><language>eng</language><publisher>Heidelberg: EDP Sciences</publisher><subject>Astrochemistry ; Density ; Deuteration ; Deuterium ; Fractionation ; Low mass stars ; Radiative transfer ; Sciences of the Universe ; Star formation ; Temperature profiles ; Time</subject><ispartof>Astronomy and astrophysics (Berlin), 2024-08, Vol.688, p.A118</ispartof><rights>2024. This work is licensed under https://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c237t-8645557ed27c8a7b007ebdf3a7764eb1e1529d7be36b310b1f1b195f9c64f6e73</cites><orcidid>0000-0001-7349-6113 ; 0000-0001-5522-486X ; 0000-0002-6868-4483 ; 0000-0003-0334-1583 ; 0000-0002-3319-1021</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-04822450$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lin, Sheng-Jun</creatorcontrib><creatorcontrib>Lai, Shih-Ping</creatorcontrib><creatorcontrib>Pagani, Laurent</creatorcontrib><creatorcontrib>Lefèvre, Charlène</creatorcontrib><creatorcontrib>Thieme, Travis J.</creatorcontrib><title>Deuterium fractionation of the starless core L 1498</title><title>Astronomy and astrophysics (Berlin)</title><description>Context . Molecular deuteration is commonly seen in starless cores and is expected to occur on a timescale comparable to that of the core contraction. Thus, the deuteration serves as a chemical clock, allowing us to investigate dynamical theories of core formation. Aims . We aim to provide a 3D cloud description for the starless core L 1498 located in the nearby low-mass star-forming region Taurus and explore its possible core formation mechanism. Methods . We carried out nonlocal thermal equilibrium radiative transfer with multi-transition observations of the high-density tracer N 2 H + to derive the density and temperature profiles of the L 1498 core. By combining these observations with the spectral observations of the deuterated species, ortho-H 2 D + , N 2 D + , and DCO + , we derived the abundance profiles for the observed species and performed chemical modeling of the deuteration profiles across L 1498 to constrain the contraction timescale. Results . We present the first ortho-H 2 D + (1 10 −1 11 ) detection toward L 1498. We find a peak molecular hydrogen density of 1.6 −0.3 +3.0 × 10 5 cm −3 , a temperature of 7.5 −0.5 +0.7 K, and a N 2 H + deuteration of 0.27 −0.15 +0.12 in the center. Conclusions . We derived a lower limit of the core age for L 1498 of 0.16 Ma, which is compatible with the typical free-fall time, indicating that L 1498 likely formed rapidly.</description><subject>Astrochemistry</subject><subject>Density</subject><subject>Deuteration</subject><subject>Deuterium</subject><subject>Fractionation</subject><subject>Low mass stars</subject><subject>Radiative transfer</subject><subject>Sciences of the Universe</subject><subject>Star formation</subject><subject>Temperature profiles</subject><subject>Time</subject><issn>0004-6361</issn><issn>1432-0746</issn><issn>1432-0756</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLw0AUhQdRsFZ_gZuAOyH23nlnWeqjQsCNroeZdIamtJ06kwj-exMi3dzDhY_D4SPkHuEJQeACAHgpmcQFBcq4FrS6IDPkjJaguLwkszNxTW5y3g0vRc1mhD37vvOp7Q9FSLbp2ni04yliKLqtL3Jn097nXDQx-aIukFf6llwFu8_-7j_n5Ov15XO1LuuPt_fVsi4bylRXasmFEMpvqGq0VQ5AebcJzColuXfocZi5Uc4z6RiCw4AOKxGqRvIgvWJz8jj1bu3enFJ7sOnXRNua9bI27TH3BrimlAv4wQF-mOBTit-9z53ZxT4dh32GQcW5VkKJgWIT1aSYc_Lh3ItgRpVmFGVGUeaskv0Bc3hjKw</recordid><startdate>20240801</startdate><enddate>20240801</enddate><creator>Lin, Sheng-Jun</creator><creator>Lai, Shih-Ping</creator><creator>Pagani, Laurent</creator><creator>Lefèvre, Charlène</creator><creator>Thieme, Travis J.</creator><general>EDP Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-7349-6113</orcidid><orcidid>https://orcid.org/0000-0001-5522-486X</orcidid><orcidid>https://orcid.org/0000-0002-6868-4483</orcidid><orcidid>https://orcid.org/0000-0003-0334-1583</orcidid><orcidid>https://orcid.org/0000-0002-3319-1021</orcidid></search><sort><creationdate>20240801</creationdate><title>Deuterium fractionation of the starless core L 1498</title><author>Lin, Sheng-Jun ; Lai, Shih-Ping ; Pagani, Laurent ; Lefèvre, Charlène ; Thieme, Travis J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c237t-8645557ed27c8a7b007ebdf3a7764eb1e1529d7be36b310b1f1b195f9c64f6e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Astrochemistry</topic><topic>Density</topic><topic>Deuteration</topic><topic>Deuterium</topic><topic>Fractionation</topic><topic>Low mass stars</topic><topic>Radiative transfer</topic><topic>Sciences of the Universe</topic><topic>Star formation</topic><topic>Temperature profiles</topic><topic>Time</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Sheng-Jun</creatorcontrib><creatorcontrib>Lai, Shih-Ping</creatorcontrib><creatorcontrib>Pagani, Laurent</creatorcontrib><creatorcontrib>Lefèvre, Charlène</creatorcontrib><creatorcontrib>Thieme, Travis J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Astronomy and astrophysics (Berlin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Sheng-Jun</au><au>Lai, Shih-Ping</au><au>Pagani, Laurent</au><au>Lefèvre, Charlène</au><au>Thieme, Travis J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deuterium fractionation of the starless core L 1498</atitle><jtitle>Astronomy and astrophysics (Berlin)</jtitle><date>2024-08-01</date><risdate>2024</risdate><volume>688</volume><spage>A118</spage><pages>A118-</pages><issn>0004-6361</issn><eissn>1432-0746</eissn><eissn>1432-0756</eissn><abstract>Context . Molecular deuteration is commonly seen in starless cores and is expected to occur on a timescale comparable to that of the core contraction. Thus, the deuteration serves as a chemical clock, allowing us to investigate dynamical theories of core formation. Aims . We aim to provide a 3D cloud description for the starless core L 1498 located in the nearby low-mass star-forming region Taurus and explore its possible core formation mechanism. Methods . We carried out nonlocal thermal equilibrium radiative transfer with multi-transition observations of the high-density tracer N 2 H + to derive the density and temperature profiles of the L 1498 core. By combining these observations with the spectral observations of the deuterated species, ortho-H 2 D + , N 2 D + , and DCO + , we derived the abundance profiles for the observed species and performed chemical modeling of the deuteration profiles across L 1498 to constrain the contraction timescale. Results . We present the first ortho-H 2 D + (1 10 −1 11 ) detection toward L 1498. We find a peak molecular hydrogen density of 1.6 −0.3 +3.0 × 10 5 cm −3 , a temperature of 7.5 −0.5 +0.7 K, and a N 2 H + deuteration of 0.27 −0.15 +0.12 in the center. Conclusions . We derived a lower limit of the core age for L 1498 of 0.16 Ma, which is compatible with the typical free-fall time, indicating that L 1498 likely formed rapidly.</abstract><cop>Heidelberg</cop><pub>EDP Sciences</pub><doi>10.1051/0004-6361/202348529</doi><orcidid>https://orcid.org/0000-0001-7349-6113</orcidid><orcidid>https://orcid.org/0000-0001-5522-486X</orcidid><orcidid>https://orcid.org/0000-0002-6868-4483</orcidid><orcidid>https://orcid.org/0000-0003-0334-1583</orcidid><orcidid>https://orcid.org/0000-0002-3319-1021</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-6361
ispartof Astronomy and astrophysics (Berlin), 2024-08, Vol.688, p.A118
issn 0004-6361
1432-0746
1432-0756
language eng
recordid cdi_hal_primary_oai_HAL_insu_04822450v1
source EZB Electronic Journals Library
subjects Astrochemistry
Density
Deuteration
Deuterium
Fractionation
Low mass stars
Radiative transfer
Sciences of the Universe
Star formation
Temperature profiles
Time
title Deuterium fractionation of the starless core L 1498
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A29%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deuterium%20fractionation%20of%20the%20starless%20core%20L%201498&rft.jtitle=Astronomy%20and%20astrophysics%20(Berlin)&rft.au=Lin,%20Sheng-Jun&rft.date=2024-08-01&rft.volume=688&rft.spage=A118&rft.pages=A118-&rft.issn=0004-6361&rft.eissn=1432-0746&rft_id=info:doi/10.1051/0004-6361/202348529&rft_dat=%3Cproquest_hal_p%3E3094487575%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c237t-8645557ed27c8a7b007ebdf3a7764eb1e1529d7be36b310b1f1b195f9c64f6e73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3094487575&rft_id=info:pmid/&rfr_iscdi=true