Loading…
A New Adaptive RISE Feedforward Approach based on Associative Memory Neural Networks for the Control of PKMs
In this paper, a RISE (Robust Integral of the Sign Error) controller with adaptive feedforward compensation terms based on Associative Memory Neural Network (AMNN) type B-Spline is proposed to regulate the positioning of a Delta Parallel Robot (DPR) with three degrees of freedom. Parallel Kinematic...
Saved in:
Published in: | Journal of intelligent & robotic systems 2020-12, Vol.100 (3-4), p.827-847 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c394t-dbadb6d8fabed3a69f59a007bc90ceba93bc6357d83caca0869b6e41306f0a1a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c394t-dbadb6d8fabed3a69f59a007bc90ceba93bc6357d83caca0869b6e41306f0a1a3 |
container_end_page | 847 |
container_issue | 3-4 |
container_start_page | 827 |
container_title | Journal of intelligent & robotic systems |
container_volume | 100 |
creator | Escorcia-Hernández, Jonatan Martín Aguilar-Sierra, Hipólito Aguilar-Mejia, Omar Chemori, Ahmed Arroyo-Núñez, José Humberto |
description | In this paper, a RISE (Robust Integral of the Sign Error) controller with adaptive feedforward compensation terms based on Associative Memory Neural Network (AMNN) type B-Spline is proposed to regulate the positioning of a Delta Parallel Robot (DPR) with three degrees of freedom. Parallel Kinematic Manipulators (PKMs) are highly nonlinear systems, so the design of a suitable control scheme represents a significant challenge given that these kinds of systems are continually dealing with parametric and non-parametric uncertainties and external disturbances. The main contribution of this work is the design of an adaptive feedforward compensation term using B-Spline Neural Networks (BSNNs). They make an on-line approximation of the DPR dynamics and integrates it into the control loop. The BSNNs’ functions are bounded according to the extreme values of the desired joint space trajectories that are the BSNNs’ inputs, and their weights are on-line adjusted by gradient descend rules. In order to evaluate the effectiveness of the proposed control scheme with respect to the standard RISE controller, numerical simulations for different case studies under different scenarios were performed. |
doi_str_mv | 10.1007/s10846-020-01242-9 |
format | article |
fullrecord | <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_lirmm_02925920v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724991999</galeid><sourcerecordid>A724991999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c394t-dbadb6d8fabed3a69f59a007bc90ceba93bc6357d83caca0869b6e41306f0a1a3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EEkvLH-BkiSNKGduJEx-jVb_ElqIWztbEH92UJF7sbFf993gbBDdOI9nPM37HQ8gHBmcMoP6cGDSlLIBDAYyXvFCvyIpVtSigBPWarEBxlq-VfEvepfQIAKqp1IoMLf3qDrS1uJv7J0fvru_P6YVz1od4wGhpu9vFgGZLO0zO0jDRNqVgenzBb9wY4nNusY845DIfQvyZaJbpvHV0HaY5hoEGT799uUmn5I3HIbn3f-oJ-XFx_n19VWxuL6_X7aYwQpVzYTu0nbSNx85ZgVL5SmGesjMKjOtQic5IUdW2EQYNQiNVJ13JBEgPyFCckE9L3y0Oehf7EeOzDtjrq3ajhz6Oo85fwSvF4Yll-uNC50F_7V2a9WPYxykH1LysBa-qSjaZOluoBxyc7icf5ojH560bexMm5_t83ta8VIoppbLAF8HEkFJ0_m8SBvq4NL0sLUcB_bI0fZTEIqUMTw8u_svyH-s337iZcA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2473255568</pqid></control><display><type>article</type><title>A New Adaptive RISE Feedforward Approach based on Associative Memory Neural Networks for the Control of PKMs</title><source>Springer Link</source><creator>Escorcia-Hernández, Jonatan Martín ; Aguilar-Sierra, Hipólito ; Aguilar-Mejia, Omar ; Chemori, Ahmed ; Arroyo-Núñez, José Humberto</creator><creatorcontrib>Escorcia-Hernández, Jonatan Martín ; Aguilar-Sierra, Hipólito ; Aguilar-Mejia, Omar ; Chemori, Ahmed ; Arroyo-Núñez, José Humberto</creatorcontrib><description>In this paper, a RISE (Robust Integral of the Sign Error) controller with adaptive feedforward compensation terms based on Associative Memory Neural Network (AMNN) type B-Spline is proposed to regulate the positioning of a Delta Parallel Robot (DPR) with three degrees of freedom. Parallel Kinematic Manipulators (PKMs) are highly nonlinear systems, so the design of a suitable control scheme represents a significant challenge given that these kinds of systems are continually dealing with parametric and non-parametric uncertainties and external disturbances. The main contribution of this work is the design of an adaptive feedforward compensation term using B-Spline Neural Networks (BSNNs). They make an on-line approximation of the DPR dynamics and integrates it into the control loop. The BSNNs’ functions are bounded according to the extreme values of the desired joint space trajectories that are the BSNNs’ inputs, and their weights are on-line adjusted by gradient descend rules. In order to evaluate the effectiveness of the proposed control scheme with respect to the standard RISE controller, numerical simulations for different case studies under different scenarios were performed.</description><identifier>ISSN: 0921-0296</identifier><identifier>EISSN: 1573-0409</identifier><identifier>DOI: 10.1007/s10846-020-01242-9</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Artificial Intelligence ; Associative memory ; Automatic ; Case studies ; Compensation ; Control ; Controllers ; Electrical Engineering ; Engineering ; Engineering Sciences ; Extreme values ; Feedforward control ; Mathematical analysis ; Mechanical Engineering ; Mechatronics ; Memory ; Neural networks ; Nonlinear systems ; Numerical analysis ; Parallel degrees of freedom ; Robot arms ; Robotics ; Robustness (mathematics)</subject><ispartof>Journal of intelligent & robotic systems, 2020-12, Vol.100 (3-4), p.827-847</ispartof><rights>Springer Nature B.V. 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Nature B.V. 2020.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c394t-dbadb6d8fabed3a69f59a007bc90ceba93bc6357d83caca0869b6e41306f0a1a3</citedby><cites>FETCH-LOGICAL-c394t-dbadb6d8fabed3a69f59a007bc90ceba93bc6357d83caca0869b6e41306f0a1a3</cites><orcidid>0000-0002-7049-1584 ; 0000-0001-9933-7209 ; 0000-0001-9739-9473</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal-lirmm.ccsd.cnrs.fr/lirmm-02925920$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Escorcia-Hernández, Jonatan Martín</creatorcontrib><creatorcontrib>Aguilar-Sierra, Hipólito</creatorcontrib><creatorcontrib>Aguilar-Mejia, Omar</creatorcontrib><creatorcontrib>Chemori, Ahmed</creatorcontrib><creatorcontrib>Arroyo-Núñez, José Humberto</creatorcontrib><title>A New Adaptive RISE Feedforward Approach based on Associative Memory Neural Networks for the Control of PKMs</title><title>Journal of intelligent & robotic systems</title><addtitle>J Intell Robot Syst</addtitle><description>In this paper, a RISE (Robust Integral of the Sign Error) controller with adaptive feedforward compensation terms based on Associative Memory Neural Network (AMNN) type B-Spline is proposed to regulate the positioning of a Delta Parallel Robot (DPR) with three degrees of freedom. Parallel Kinematic Manipulators (PKMs) are highly nonlinear systems, so the design of a suitable control scheme represents a significant challenge given that these kinds of systems are continually dealing with parametric and non-parametric uncertainties and external disturbances. The main contribution of this work is the design of an adaptive feedforward compensation term using B-Spline Neural Networks (BSNNs). They make an on-line approximation of the DPR dynamics and integrates it into the control loop. The BSNNs’ functions are bounded according to the extreme values of the desired joint space trajectories that are the BSNNs’ inputs, and their weights are on-line adjusted by gradient descend rules. In order to evaluate the effectiveness of the proposed control scheme with respect to the standard RISE controller, numerical simulations for different case studies under different scenarios were performed.</description><subject>Analysis</subject><subject>Artificial Intelligence</subject><subject>Associative memory</subject><subject>Automatic</subject><subject>Case studies</subject><subject>Compensation</subject><subject>Control</subject><subject>Controllers</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Engineering Sciences</subject><subject>Extreme values</subject><subject>Feedforward control</subject><subject>Mathematical analysis</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Memory</subject><subject>Neural networks</subject><subject>Nonlinear systems</subject><subject>Numerical analysis</subject><subject>Parallel degrees of freedom</subject><subject>Robot arms</subject><subject>Robotics</subject><subject>Robustness (mathematics)</subject><issn>0921-0296</issn><issn>1573-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kU1v1DAQhi0EEkvLH-BkiSNKGduJEx-jVb_ElqIWztbEH92UJF7sbFf993gbBDdOI9nPM37HQ8gHBmcMoP6cGDSlLIBDAYyXvFCvyIpVtSigBPWarEBxlq-VfEvepfQIAKqp1IoMLf3qDrS1uJv7J0fvru_P6YVz1od4wGhpu9vFgGZLO0zO0jDRNqVgenzBb9wY4nNusY845DIfQvyZaJbpvHV0HaY5hoEGT799uUmn5I3HIbn3f-oJ-XFx_n19VWxuL6_X7aYwQpVzYTu0nbSNx85ZgVL5SmGesjMKjOtQic5IUdW2EQYNQiNVJ13JBEgPyFCckE9L3y0Oehf7EeOzDtjrq3ajhz6Oo85fwSvF4Yll-uNC50F_7V2a9WPYxykH1LysBa-qSjaZOluoBxyc7icf5ojH560bexMm5_t83ta8VIoppbLAF8HEkFJ0_m8SBvq4NL0sLUcB_bI0fZTEIqUMTw8u_svyH-s337iZcA</recordid><startdate>20201201</startdate><enddate>20201201</enddate><creator>Escorcia-Hernández, Jonatan Martín</creator><creator>Aguilar-Sierra, Hipólito</creator><creator>Aguilar-Mejia, Omar</creator><creator>Chemori, Ahmed</creator><creator>Arroyo-Núñez, José Humberto</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7049-1584</orcidid><orcidid>https://orcid.org/0000-0001-9933-7209</orcidid><orcidid>https://orcid.org/0000-0001-9739-9473</orcidid></search><sort><creationdate>20201201</creationdate><title>A New Adaptive RISE Feedforward Approach based on Associative Memory Neural Networks for the Control of PKMs</title><author>Escorcia-Hernández, Jonatan Martín ; Aguilar-Sierra, Hipólito ; Aguilar-Mejia, Omar ; Chemori, Ahmed ; Arroyo-Núñez, José Humberto</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c394t-dbadb6d8fabed3a69f59a007bc90ceba93bc6357d83caca0869b6e41306f0a1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analysis</topic><topic>Artificial Intelligence</topic><topic>Associative memory</topic><topic>Automatic</topic><topic>Case studies</topic><topic>Compensation</topic><topic>Control</topic><topic>Controllers</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Engineering Sciences</topic><topic>Extreme values</topic><topic>Feedforward control</topic><topic>Mathematical analysis</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Memory</topic><topic>Neural networks</topic><topic>Nonlinear systems</topic><topic>Numerical analysis</topic><topic>Parallel degrees of freedom</topic><topic>Robot arms</topic><topic>Robotics</topic><topic>Robustness (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Escorcia-Hernández, Jonatan Martín</creatorcontrib><creatorcontrib>Aguilar-Sierra, Hipólito</creatorcontrib><creatorcontrib>Aguilar-Mejia, Omar</creatorcontrib><creatorcontrib>Chemori, Ahmed</creatorcontrib><creatorcontrib>Arroyo-Núñez, José Humberto</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of intelligent & robotic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Escorcia-Hernández, Jonatan Martín</au><au>Aguilar-Sierra, Hipólito</au><au>Aguilar-Mejia, Omar</au><au>Chemori, Ahmed</au><au>Arroyo-Núñez, José Humberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A New Adaptive RISE Feedforward Approach based on Associative Memory Neural Networks for the Control of PKMs</atitle><jtitle>Journal of intelligent & robotic systems</jtitle><stitle>J Intell Robot Syst</stitle><date>2020-12-01</date><risdate>2020</risdate><volume>100</volume><issue>3-4</issue><spage>827</spage><epage>847</epage><pages>827-847</pages><issn>0921-0296</issn><eissn>1573-0409</eissn><abstract>In this paper, a RISE (Robust Integral of the Sign Error) controller with adaptive feedforward compensation terms based on Associative Memory Neural Network (AMNN) type B-Spline is proposed to regulate the positioning of a Delta Parallel Robot (DPR) with three degrees of freedom. Parallel Kinematic Manipulators (PKMs) are highly nonlinear systems, so the design of a suitable control scheme represents a significant challenge given that these kinds of systems are continually dealing with parametric and non-parametric uncertainties and external disturbances. The main contribution of this work is the design of an adaptive feedforward compensation term using B-Spline Neural Networks (BSNNs). They make an on-line approximation of the DPR dynamics and integrates it into the control loop. The BSNNs’ functions are bounded according to the extreme values of the desired joint space trajectories that are the BSNNs’ inputs, and their weights are on-line adjusted by gradient descend rules. In order to evaluate the effectiveness of the proposed control scheme with respect to the standard RISE controller, numerical simulations for different case studies under different scenarios were performed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10846-020-01242-9</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-7049-1584</orcidid><orcidid>https://orcid.org/0000-0001-9933-7209</orcidid><orcidid>https://orcid.org/0000-0001-9739-9473</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-0296 |
ispartof | Journal of intelligent & robotic systems, 2020-12, Vol.100 (3-4), p.827-847 |
issn | 0921-0296 1573-0409 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_lirmm_02925920v1 |
source | Springer Link |
subjects | Analysis Artificial Intelligence Associative memory Automatic Case studies Compensation Control Controllers Electrical Engineering Engineering Engineering Sciences Extreme values Feedforward control Mathematical analysis Mechanical Engineering Mechatronics Memory Neural networks Nonlinear systems Numerical analysis Parallel degrees of freedom Robot arms Robotics Robustness (mathematics) |
title | A New Adaptive RISE Feedforward Approach based on Associative Memory Neural Networks for the Control of PKMs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T13%3A39%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20New%20Adaptive%20RISE%20Feedforward%20Approach%20based%20on%20Associative%20Memory%20Neural%20Networks%20for%20the%20Control%20of%20PKMs&rft.jtitle=Journal%20of%20intelligent%20&%20robotic%20systems&rft.au=Escorcia-Hern%C3%A1ndez,%20Jonatan%20Mart%C3%ADn&rft.date=2020-12-01&rft.volume=100&rft.issue=3-4&rft.spage=827&rft.epage=847&rft.pages=827-847&rft.issn=0921-0296&rft.eissn=1573-0409&rft_id=info:doi/10.1007/s10846-020-01242-9&rft_dat=%3Cgale_hal_p%3EA724991999%3C/gale_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c394t-dbadb6d8fabed3a69f59a007bc90ceba93bc6357d83caca0869b6e41306f0a1a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2473255568&rft_id=info:pmid/&rft_galeid=A724991999&rfr_iscdi=true |