Loading…
Hitting forbidden induced subgraphs on bounded treewidth graphs
For a fixed graph H, the H-IS-Deletion problem asks, given a graph G, for the minimum size of a set S⊆V(G) such that G∖S excludes H as an induced subgraph. We are interested in determining, for a fixed H, the smallest function fH(t) such that H-IS-Deletion can be solved in time fH(t)⋅nO(1) assuming...
Saved in:
Published in: | Information and computation 2021-12, Vol.281, p.104812, Article 104812 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c372t-e69fe9a3906e4bfabbdc816bb4e6f323950e22a4f7726f00d7686a27565f33d33 |
---|---|
cites | cdi_FETCH-LOGICAL-c372t-e69fe9a3906e4bfabbdc816bb4e6f323950e22a4f7726f00d7686a27565f33d33 |
container_end_page | |
container_issue | |
container_start_page | 104812 |
container_title | Information and computation |
container_volume | 281 |
creator | Sau, Ignasi dos Santos Souza, Uéverton |
description | For a fixed graph H, the H-IS-Deletion problem asks, given a graph G, for the minimum size of a set S⊆V(G) such that G∖S excludes H as an induced subgraph. We are interested in determining, for a fixed H, the smallest function fH(t) such that H-IS-Deletion can be solved in time fH(t)⋅nO(1) assuming the Exponential Time Hypothesis, where t and n denote the treewidth and the number of vertices of G, respectively. We show that fH(t)=2O(th−2) for every H on h≥3 vertices, and that fH(t)=2O(t) if H is a clique or an independent set. When H deviates slightly from a clique, the function fH(t) suffers a sharp jump: if H is obtained from a clique of size h by removing one edge, then fH(t)=2Θ(th−2). Moreover, fH(t)=2Ω(th) when H=Kh,h, answering a question of Pilipczuk [MFCS 2011]. |
doi_str_mv | 10.1016/j.ic.2021.104812 |
format | article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_lirmm_03772257v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0890540121001280</els_id><sourcerecordid>S0890540121001280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-e69fe9a3906e4bfabbdc816bb4e6f323950e22a4f7726f00d7686a27565f33d33</originalsourceid><addsrcrecordid>eNp1kEtLAzEQgIMoWKt3j3uXrZNkk931IqWoFQpe9BzymLQp7W5JthX_vZEVb57m-Q3MR8gthRkFKu-3s2BnDBjNZdVQdkYmFFoomRT0nEygybmogF6Sq5S2AJSKSk7I4zIMQ-jWhe-jCc5hV4TOHS26Ih3NOurDJhV9V5j-2LncHCLiZ3DDphhn1-TC613Cm984JR_PT--LZbl6e3ldzFel5TUbSpStx1bzFiRWxmtjnG2oNKZC6TnjrQBkTFe-rpn0AK6WjdSsFlJ4zh3nU3I33t3onTrEsNfxS_U6qOV8pXYh7vcKeIaZqE80b8O4bWOfUkT_h1BQP7rUVgWrfnSpUVdGHkYE8xengFElG7DLIkJEOyjXh__hb8e2cRY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hitting forbidden induced subgraphs on bounded treewidth graphs</title><source>ScienceDirect Freedom Collection</source><creator>Sau, Ignasi ; dos Santos Souza, Uéverton</creator><creatorcontrib>Sau, Ignasi ; dos Santos Souza, Uéverton</creatorcontrib><description>For a fixed graph H, the H-IS-Deletion problem asks, given a graph G, for the minimum size of a set S⊆V(G) such that G∖S excludes H as an induced subgraph. We are interested in determining, for a fixed H, the smallest function fH(t) such that H-IS-Deletion can be solved in time fH(t)⋅nO(1) assuming the Exponential Time Hypothesis, where t and n denote the treewidth and the number of vertices of G, respectively. We show that fH(t)=2O(th−2) for every H on h≥3 vertices, and that fH(t)=2O(t) if H is a clique or an independent set. When H deviates slightly from a clique, the function fH(t) suffers a sharp jump: if H is obtained from a clique of size h by removing one edge, then fH(t)=2Θ(th−2). Moreover, fH(t)=2Ω(th) when H=Kh,h, answering a question of Pilipczuk [MFCS 2011].</description><identifier>ISSN: 0890-5401</identifier><identifier>EISSN: 1090-2651</identifier><identifier>DOI: 10.1016/j.ic.2021.104812</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Dynamic programming ; Exponential time hypothesis ; Hitting subgraphs ; Induced subgraphs ; Lower bound ; Mathematics ; Parameterized complexity ; Treewidth</subject><ispartof>Information and computation, 2021-12, Vol.281, p.104812, Article 104812</ispartof><rights>2021 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-e69fe9a3906e4bfabbdc816bb4e6f323950e22a4f7726f00d7686a27565f33d33</citedby><cites>FETCH-LOGICAL-c372t-e69fe9a3906e4bfabbdc816bb4e6f323950e22a4f7726f00d7686a27565f33d33</cites><orcidid>0000-0002-8981-9287 ; 0000-0002-5320-9209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal-lirmm.ccsd.cnrs.fr/lirmm-03772257$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sau, Ignasi</creatorcontrib><creatorcontrib>dos Santos Souza, Uéverton</creatorcontrib><title>Hitting forbidden induced subgraphs on bounded treewidth graphs</title><title>Information and computation</title><description>For a fixed graph H, the H-IS-Deletion problem asks, given a graph G, for the minimum size of a set S⊆V(G) such that G∖S excludes H as an induced subgraph. We are interested in determining, for a fixed H, the smallest function fH(t) such that H-IS-Deletion can be solved in time fH(t)⋅nO(1) assuming the Exponential Time Hypothesis, where t and n denote the treewidth and the number of vertices of G, respectively. We show that fH(t)=2O(th−2) for every H on h≥3 vertices, and that fH(t)=2O(t) if H is a clique or an independent set. When H deviates slightly from a clique, the function fH(t) suffers a sharp jump: if H is obtained from a clique of size h by removing one edge, then fH(t)=2Θ(th−2). Moreover, fH(t)=2Ω(th) when H=Kh,h, answering a question of Pilipczuk [MFCS 2011].</description><subject>Dynamic programming</subject><subject>Exponential time hypothesis</subject><subject>Hitting subgraphs</subject><subject>Induced subgraphs</subject><subject>Lower bound</subject><subject>Mathematics</subject><subject>Parameterized complexity</subject><subject>Treewidth</subject><issn>0890-5401</issn><issn>1090-2651</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEQgIMoWKt3j3uXrZNkk931IqWoFQpe9BzymLQp7W5JthX_vZEVb57m-Q3MR8gthRkFKu-3s2BnDBjNZdVQdkYmFFoomRT0nEygybmogF6Sq5S2AJSKSk7I4zIMQ-jWhe-jCc5hV4TOHS26Ih3NOurDJhV9V5j-2LncHCLiZ3DDphhn1-TC613Cm984JR_PT--LZbl6e3ldzFel5TUbSpStx1bzFiRWxmtjnG2oNKZC6TnjrQBkTFe-rpn0AK6WjdSsFlJ4zh3nU3I33t3onTrEsNfxS_U6qOV8pXYh7vcKeIaZqE80b8O4bWOfUkT_h1BQP7rUVgWrfnSpUVdGHkYE8xengFElG7DLIkJEOyjXh__hb8e2cRY</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Sau, Ignasi</creator><creator>dos Santos Souza, Uéverton</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8981-9287</orcidid><orcidid>https://orcid.org/0000-0002-5320-9209</orcidid></search><sort><creationdate>202112</creationdate><title>Hitting forbidden induced subgraphs on bounded treewidth graphs</title><author>Sau, Ignasi ; dos Santos Souza, Uéverton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-e69fe9a3906e4bfabbdc816bb4e6f323950e22a4f7726f00d7686a27565f33d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dynamic programming</topic><topic>Exponential time hypothesis</topic><topic>Hitting subgraphs</topic><topic>Induced subgraphs</topic><topic>Lower bound</topic><topic>Mathematics</topic><topic>Parameterized complexity</topic><topic>Treewidth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sau, Ignasi</creatorcontrib><creatorcontrib>dos Santos Souza, Uéverton</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Information and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sau, Ignasi</au><au>dos Santos Souza, Uéverton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hitting forbidden induced subgraphs on bounded treewidth graphs</atitle><jtitle>Information and computation</jtitle><date>2021-12</date><risdate>2021</risdate><volume>281</volume><spage>104812</spage><pages>104812-</pages><artnum>104812</artnum><issn>0890-5401</issn><eissn>1090-2651</eissn><abstract>For a fixed graph H, the H-IS-Deletion problem asks, given a graph G, for the minimum size of a set S⊆V(G) such that G∖S excludes H as an induced subgraph. We are interested in determining, for a fixed H, the smallest function fH(t) such that H-IS-Deletion can be solved in time fH(t)⋅nO(1) assuming the Exponential Time Hypothesis, where t and n denote the treewidth and the number of vertices of G, respectively. We show that fH(t)=2O(th−2) for every H on h≥3 vertices, and that fH(t)=2O(t) if H is a clique or an independent set. When H deviates slightly from a clique, the function fH(t) suffers a sharp jump: if H is obtained from a clique of size h by removing one edge, then fH(t)=2Θ(th−2). Moreover, fH(t)=2Ω(th) when H=Kh,h, answering a question of Pilipczuk [MFCS 2011].</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ic.2021.104812</doi><orcidid>https://orcid.org/0000-0002-8981-9287</orcidid><orcidid>https://orcid.org/0000-0002-5320-9209</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0890-5401 |
ispartof | Information and computation, 2021-12, Vol.281, p.104812, Article 104812 |
issn | 0890-5401 1090-2651 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_lirmm_03772257v1 |
source | ScienceDirect Freedom Collection |
subjects | Dynamic programming Exponential time hypothesis Hitting subgraphs Induced subgraphs Lower bound Mathematics Parameterized complexity Treewidth |
title | Hitting forbidden induced subgraphs on bounded treewidth graphs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hitting%20forbidden%20induced%20subgraphs%20on%20bounded%20treewidth%20graphs&rft.jtitle=Information%20and%20computation&rft.au=Sau,%20Ignasi&rft.date=2021-12&rft.volume=281&rft.spage=104812&rft.pages=104812-&rft.artnum=104812&rft.issn=0890-5401&rft.eissn=1090-2651&rft_id=info:doi/10.1016/j.ic.2021.104812&rft_dat=%3Celsevier_hal_p%3ES0890540121001280%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-e69fe9a3906e4bfabbdc816bb4e6f323950e22a4f7726f00d7686a27565f33d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |