Loading…

Hitting forbidden induced subgraphs on bounded treewidth graphs

For a fixed graph H, the H-IS-Deletion problem asks, given a graph G, for the minimum size of a set S⊆V(G) such that G∖S excludes H as an induced subgraph. We are interested in determining, for a fixed H, the smallest function fH(t) such that H-IS-Deletion can be solved in time fH(t)⋅nO(1) assuming...

Full description

Saved in:
Bibliographic Details
Published in:Information and computation 2021-12, Vol.281, p.104812, Article 104812
Main Authors: Sau, Ignasi, dos Santos Souza, Uéverton
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c372t-e69fe9a3906e4bfabbdc816bb4e6f323950e22a4f7726f00d7686a27565f33d33
cites cdi_FETCH-LOGICAL-c372t-e69fe9a3906e4bfabbdc816bb4e6f323950e22a4f7726f00d7686a27565f33d33
container_end_page
container_issue
container_start_page 104812
container_title Information and computation
container_volume 281
creator Sau, Ignasi
dos Santos Souza, Uéverton
description For a fixed graph H, the H-IS-Deletion problem asks, given a graph G, for the minimum size of a set S⊆V(G) such that G∖S excludes H as an induced subgraph. We are interested in determining, for a fixed H, the smallest function fH(t) such that H-IS-Deletion can be solved in time fH(t)⋅nO(1) assuming the Exponential Time Hypothesis, where t and n denote the treewidth and the number of vertices of G, respectively. We show that fH(t)=2O(th−2) for every H on h≥3 vertices, and that fH(t)=2O(t) if H is a clique or an independent set. When H deviates slightly from a clique, the function fH(t) suffers a sharp jump: if H is obtained from a clique of size h by removing one edge, then fH(t)=2Θ(th−2). Moreover, fH(t)=2Ω(th) when H=Kh,h, answering a question of Pilipczuk [MFCS 2011].
doi_str_mv 10.1016/j.ic.2021.104812
format article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_lirmm_03772257v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0890540121001280</els_id><sourcerecordid>S0890540121001280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-e69fe9a3906e4bfabbdc816bb4e6f323950e22a4f7726f00d7686a27565f33d33</originalsourceid><addsrcrecordid>eNp1kEtLAzEQgIMoWKt3j3uXrZNkk931IqWoFQpe9BzymLQp7W5JthX_vZEVb57m-Q3MR8gthRkFKu-3s2BnDBjNZdVQdkYmFFoomRT0nEygybmogF6Sq5S2AJSKSk7I4zIMQ-jWhe-jCc5hV4TOHS26Ih3NOurDJhV9V5j-2LncHCLiZ3DDphhn1-TC613Cm984JR_PT--LZbl6e3ldzFel5TUbSpStx1bzFiRWxmtjnG2oNKZC6TnjrQBkTFe-rpn0AK6WjdSsFlJ4zh3nU3I33t3onTrEsNfxS_U6qOV8pXYh7vcKeIaZqE80b8O4bWOfUkT_h1BQP7rUVgWrfnSpUVdGHkYE8xengFElG7DLIkJEOyjXh__hb8e2cRY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Hitting forbidden induced subgraphs on bounded treewidth graphs</title><source>ScienceDirect Freedom Collection</source><creator>Sau, Ignasi ; dos Santos Souza, Uéverton</creator><creatorcontrib>Sau, Ignasi ; dos Santos Souza, Uéverton</creatorcontrib><description>For a fixed graph H, the H-IS-Deletion problem asks, given a graph G, for the minimum size of a set S⊆V(G) such that G∖S excludes H as an induced subgraph. We are interested in determining, for a fixed H, the smallest function fH(t) such that H-IS-Deletion can be solved in time fH(t)⋅nO(1) assuming the Exponential Time Hypothesis, where t and n denote the treewidth and the number of vertices of G, respectively. We show that fH(t)=2O(th−2) for every H on h≥3 vertices, and that fH(t)=2O(t) if H is a clique or an independent set. When H deviates slightly from a clique, the function fH(t) suffers a sharp jump: if H is obtained from a clique of size h by removing one edge, then fH(t)=2Θ(th−2). Moreover, fH(t)=2Ω(th) when H=Kh,h, answering a question of Pilipczuk [MFCS 2011].</description><identifier>ISSN: 0890-5401</identifier><identifier>EISSN: 1090-2651</identifier><identifier>DOI: 10.1016/j.ic.2021.104812</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Dynamic programming ; Exponential time hypothesis ; Hitting subgraphs ; Induced subgraphs ; Lower bound ; Mathematics ; Parameterized complexity ; Treewidth</subject><ispartof>Information and computation, 2021-12, Vol.281, p.104812, Article 104812</ispartof><rights>2021 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-e69fe9a3906e4bfabbdc816bb4e6f323950e22a4f7726f00d7686a27565f33d33</citedby><cites>FETCH-LOGICAL-c372t-e69fe9a3906e4bfabbdc816bb4e6f323950e22a4f7726f00d7686a27565f33d33</cites><orcidid>0000-0002-8981-9287 ; 0000-0002-5320-9209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://hal-lirmm.ccsd.cnrs.fr/lirmm-03772257$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Sau, Ignasi</creatorcontrib><creatorcontrib>dos Santos Souza, Uéverton</creatorcontrib><title>Hitting forbidden induced subgraphs on bounded treewidth graphs</title><title>Information and computation</title><description>For a fixed graph H, the H-IS-Deletion problem asks, given a graph G, for the minimum size of a set S⊆V(G) such that G∖S excludes H as an induced subgraph. We are interested in determining, for a fixed H, the smallest function fH(t) such that H-IS-Deletion can be solved in time fH(t)⋅nO(1) assuming the Exponential Time Hypothesis, where t and n denote the treewidth and the number of vertices of G, respectively. We show that fH(t)=2O(th−2) for every H on h≥3 vertices, and that fH(t)=2O(t) if H is a clique or an independent set. When H deviates slightly from a clique, the function fH(t) suffers a sharp jump: if H is obtained from a clique of size h by removing one edge, then fH(t)=2Θ(th−2). Moreover, fH(t)=2Ω(th) when H=Kh,h, answering a question of Pilipczuk [MFCS 2011].</description><subject>Dynamic programming</subject><subject>Exponential time hypothesis</subject><subject>Hitting subgraphs</subject><subject>Induced subgraphs</subject><subject>Lower bound</subject><subject>Mathematics</subject><subject>Parameterized complexity</subject><subject>Treewidth</subject><issn>0890-5401</issn><issn>1090-2651</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEQgIMoWKt3j3uXrZNkk931IqWoFQpe9BzymLQp7W5JthX_vZEVb57m-Q3MR8gthRkFKu-3s2BnDBjNZdVQdkYmFFoomRT0nEygybmogF6Sq5S2AJSKSk7I4zIMQ-jWhe-jCc5hV4TOHS26Ih3NOurDJhV9V5j-2LncHCLiZ3DDphhn1-TC613Cm984JR_PT--LZbl6e3ldzFel5TUbSpStx1bzFiRWxmtjnG2oNKZC6TnjrQBkTFe-rpn0AK6WjdSsFlJ4zh3nU3I33t3onTrEsNfxS_U6qOV8pXYh7vcKeIaZqE80b8O4bWOfUkT_h1BQP7rUVgWrfnSpUVdGHkYE8xengFElG7DLIkJEOyjXh__hb8e2cRY</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Sau, Ignasi</creator><creator>dos Santos Souza, Uéverton</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8981-9287</orcidid><orcidid>https://orcid.org/0000-0002-5320-9209</orcidid></search><sort><creationdate>202112</creationdate><title>Hitting forbidden induced subgraphs on bounded treewidth graphs</title><author>Sau, Ignasi ; dos Santos Souza, Uéverton</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-e69fe9a3906e4bfabbdc816bb4e6f323950e22a4f7726f00d7686a27565f33d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Dynamic programming</topic><topic>Exponential time hypothesis</topic><topic>Hitting subgraphs</topic><topic>Induced subgraphs</topic><topic>Lower bound</topic><topic>Mathematics</topic><topic>Parameterized complexity</topic><topic>Treewidth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sau, Ignasi</creatorcontrib><creatorcontrib>dos Santos Souza, Uéverton</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Information and computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sau, Ignasi</au><au>dos Santos Souza, Uéverton</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hitting forbidden induced subgraphs on bounded treewidth graphs</atitle><jtitle>Information and computation</jtitle><date>2021-12</date><risdate>2021</risdate><volume>281</volume><spage>104812</spage><pages>104812-</pages><artnum>104812</artnum><issn>0890-5401</issn><eissn>1090-2651</eissn><abstract>For a fixed graph H, the H-IS-Deletion problem asks, given a graph G, for the minimum size of a set S⊆V(G) such that G∖S excludes H as an induced subgraph. We are interested in determining, for a fixed H, the smallest function fH(t) such that H-IS-Deletion can be solved in time fH(t)⋅nO(1) assuming the Exponential Time Hypothesis, where t and n denote the treewidth and the number of vertices of G, respectively. We show that fH(t)=2O(th−2) for every H on h≥3 vertices, and that fH(t)=2O(t) if H is a clique or an independent set. When H deviates slightly from a clique, the function fH(t) suffers a sharp jump: if H is obtained from a clique of size h by removing one edge, then fH(t)=2Θ(th−2). Moreover, fH(t)=2Ω(th) when H=Kh,h, answering a question of Pilipczuk [MFCS 2011].</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.ic.2021.104812</doi><orcidid>https://orcid.org/0000-0002-8981-9287</orcidid><orcidid>https://orcid.org/0000-0002-5320-9209</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0890-5401
ispartof Information and computation, 2021-12, Vol.281, p.104812, Article 104812
issn 0890-5401
1090-2651
language eng
recordid cdi_hal_primary_oai_HAL_lirmm_03772257v1
source ScienceDirect Freedom Collection
subjects Dynamic programming
Exponential time hypothesis
Hitting subgraphs
Induced subgraphs
Lower bound
Mathematics
Parameterized complexity
Treewidth
title Hitting forbidden induced subgraphs on bounded treewidth graphs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hitting%20forbidden%20induced%20subgraphs%20on%20bounded%20treewidth%20graphs&rft.jtitle=Information%20and%20computation&rft.au=Sau,%20Ignasi&rft.date=2021-12&rft.volume=281&rft.spage=104812&rft.pages=104812-&rft.artnum=104812&rft.issn=0890-5401&rft.eissn=1090-2651&rft_id=info:doi/10.1016/j.ic.2021.104812&rft_dat=%3Celsevier_hal_p%3ES0890540121001280%3C/elsevier_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c372t-e69fe9a3906e4bfabbdc816bb4e6f323950e22a4f7726f00d7686a27565f33d33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true