Loading…

Multitask learning-driven identification of novel antitrypanosomal compounds

Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries, making the need for novel drugs urgent. Therefore, an explainable multitask pipeline to profile the activity of compounds against three trypanosomes ( and ) were...

Full description

Saved in:
Bibliographic Details
Published in:Future medicinal chemistry 2023-08, Vol.15 (16), p.1449-1467
Main Authors: Lemos, Jade Milhomem, Brito da Silva, Meryck Felipe, dos Santos Carvalho, Alexandra Maria, Vicente Gil, Henric Pietro, Fiaia Costa, Vinícius Alexandre, Andrade, Carolina Horta, Braga, Rodolpho Campos, Grellier, Philippe, Muratov, Eugene N, Charneau, Sébastien, Moreira-Filho, José Teófilo, Dourado Bastos, Izabela Marques, Neves, Bruno Junior
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c350t-56dd165c898a7d91e732ff093eeeaefb7b4f5d886bdce8534b8b514fdc1c4ab83
container_end_page 1467
container_issue 16
container_start_page 1449
container_title Future medicinal chemistry
container_volume 15
creator Lemos, Jade Milhomem
Brito da Silva, Meryck Felipe
dos Santos Carvalho, Alexandra Maria
Vicente Gil, Henric Pietro
Fiaia Costa, Vinícius Alexandre
Andrade, Carolina Horta
Braga, Rodolpho Campos
Grellier, Philippe
Muratov, Eugene N
Charneau, Sébastien
Moreira-Filho, José Teófilo
Dourado Bastos, Izabela Marques
Neves, Bruno Junior
description Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries, making the need for novel drugs urgent. Therefore, an explainable multitask pipeline to profile the activity of compounds against three trypanosomes ( and ) were created. These models successfully discovered four new experimental hits ( , , and ). Among them, showed promising results, with IC values ranging 0.01–0.072 μM and selectivity indices >10,000. These results demonstrate that the multitask protocol offers predictivity and interpretability in the virtual screening of new antitrypanosomal compounds and has the potential to improve hit rates in Chagas and human African trypanosomiasis projects. Improved approaches to antitrypanosomal drug discovery are needed to boost hit rates. To address this issue, multitask models were created to profile the activity of compounds against three trypanosomes. These models facilitated the discovery of four new antitrypanosomal hits.
doi_str_mv 10.4155/fmc-2023-0074
format article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_mnhn_04792929v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864616953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-56dd165c898a7d91e732ff093eeeaefb7b4f5d886bdce8534b8b514fdc1c4ab83</originalsourceid><addsrcrecordid>eNp1kD1PwzAQQC0EEhV0ZM-IkAJ2Yif2WFVAkYJYYLYc-0wNiV3spFL_PamCunE33Ife3fAQuiH4nhLGHmyv8wIXZY5xTc_QgtSsyrko6vNTT8QlWqb0hacoCy4qtkDN69gNblDpO-tARe_8Z26i24PPnAE_OOu0GlzwWbCZD3voMjVth3jYKR9S6FWX6dDvwuhNukYXVnUJln_1Cn08Pb6vN3nz9vyyXjW5LhkeclYZQyqmueCqNoJAXRbWYlECgALb1i21zHBetUYDZyVtecsItUYTTVXLyyt0N__dqk7uoutVPMignNysGtn7rZeY1qKYck8m-HaGdzH8jJAG2bukoeuUhzAmWfCKVqQSrJzQfEZ1DClFsKfnBMujZTlZlkfL8mh54sXM23EYIyTtwGuQ89SDcdp5-Of2F_YohTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864616953</pqid></control><display><type>article</type><title>Multitask learning-driven identification of novel antitrypanosomal compounds</title><source>PubMed Central</source><creator>Lemos, Jade Milhomem ; Brito da Silva, Meryck Felipe ; dos Santos Carvalho, Alexandra Maria ; Vicente Gil, Henric Pietro ; Fiaia Costa, Vinícius Alexandre ; Andrade, Carolina Horta ; Braga, Rodolpho Campos ; Grellier, Philippe ; Muratov, Eugene N ; Charneau, Sébastien ; Moreira-Filho, José Teófilo ; Dourado Bastos, Izabela Marques ; Neves, Bruno Junior</creator><creatorcontrib>Lemos, Jade Milhomem ; Brito da Silva, Meryck Felipe ; dos Santos Carvalho, Alexandra Maria ; Vicente Gil, Henric Pietro ; Fiaia Costa, Vinícius Alexandre ; Andrade, Carolina Horta ; Braga, Rodolpho Campos ; Grellier, Philippe ; Muratov, Eugene N ; Charneau, Sébastien ; Moreira-Filho, José Teófilo ; Dourado Bastos, Izabela Marques ; Neves, Bruno Junior</creatorcontrib><description>Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries, making the need for novel drugs urgent. Therefore, an explainable multitask pipeline to profile the activity of compounds against three trypanosomes ( and ) were created. These models successfully discovered four new experimental hits ( , , and ). Among them, showed promising results, with IC values ranging 0.01–0.072 μM and selectivity indices &gt;10,000. These results demonstrate that the multitask protocol offers predictivity and interpretability in the virtual screening of new antitrypanosomal compounds and has the potential to improve hit rates in Chagas and human African trypanosomiasis projects. Improved approaches to antitrypanosomal drug discovery are needed to boost hit rates. To address this issue, multitask models were created to profile the activity of compounds against three trypanosomes. These models facilitated the discovery of four new antitrypanosomal hits.</description><identifier>ISSN: 1756-8919</identifier><identifier>EISSN: 1756-8927</identifier><identifier>DOI: 10.4155/fmc-2023-0074</identifier><language>eng</language><publisher>Newlands Press Ltd</publisher><subject>Chemical Sciences ; Computer Science ; deep learning ; Life Sciences ; low-data regimes ; model explainability ; neglected tropical diseases ; QSAR ; trypanosomatids ; virtual screening</subject><ispartof>Future medicinal chemistry, 2023-08, Vol.15 (16), p.1449-1467</ispartof><rights>2023 Newlands Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c350t-56dd165c898a7d91e732ff093eeeaefb7b4f5d886bdce8534b8b514fdc1c4ab83</cites><orcidid>0000-0002-6812-4005 ; 0000-0003-4969-3015 ; 0000-0002-3317-9479 ; 0000-0003-4153-0465 ; 0000-0003-0101-1492 ; 0000-0002-9364-7289 ; 0000-0002-2785-4255 ; 0000-0002-1309-8743 ; 0000-0003-4616-7036 ; 0000-0002-6829-6448 ; 0000-0002-0777-280X ; 0000-0003-3814-3464 ; 0000-0001-6479-5963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://mnhn.hal.science/mnhn-04792929$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lemos, Jade Milhomem</creatorcontrib><creatorcontrib>Brito da Silva, Meryck Felipe</creatorcontrib><creatorcontrib>dos Santos Carvalho, Alexandra Maria</creatorcontrib><creatorcontrib>Vicente Gil, Henric Pietro</creatorcontrib><creatorcontrib>Fiaia Costa, Vinícius Alexandre</creatorcontrib><creatorcontrib>Andrade, Carolina Horta</creatorcontrib><creatorcontrib>Braga, Rodolpho Campos</creatorcontrib><creatorcontrib>Grellier, Philippe</creatorcontrib><creatorcontrib>Muratov, Eugene N</creatorcontrib><creatorcontrib>Charneau, Sébastien</creatorcontrib><creatorcontrib>Moreira-Filho, José Teófilo</creatorcontrib><creatorcontrib>Dourado Bastos, Izabela Marques</creatorcontrib><creatorcontrib>Neves, Bruno Junior</creatorcontrib><title>Multitask learning-driven identification of novel antitrypanosomal compounds</title><title>Future medicinal chemistry</title><description>Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries, making the need for novel drugs urgent. Therefore, an explainable multitask pipeline to profile the activity of compounds against three trypanosomes ( and ) were created. These models successfully discovered four new experimental hits ( , , and ). Among them, showed promising results, with IC values ranging 0.01–0.072 μM and selectivity indices &gt;10,000. These results demonstrate that the multitask protocol offers predictivity and interpretability in the virtual screening of new antitrypanosomal compounds and has the potential to improve hit rates in Chagas and human African trypanosomiasis projects. Improved approaches to antitrypanosomal drug discovery are needed to boost hit rates. To address this issue, multitask models were created to profile the activity of compounds against three trypanosomes. These models facilitated the discovery of four new antitrypanosomal hits.</description><subject>Chemical Sciences</subject><subject>Computer Science</subject><subject>deep learning</subject><subject>Life Sciences</subject><subject>low-data regimes</subject><subject>model explainability</subject><subject>neglected tropical diseases</subject><subject>QSAR</subject><subject>trypanosomatids</subject><subject>virtual screening</subject><issn>1756-8919</issn><issn>1756-8927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQQC0EEhV0ZM-IkAJ2Yif2WFVAkYJYYLYc-0wNiV3spFL_PamCunE33Ife3fAQuiH4nhLGHmyv8wIXZY5xTc_QgtSsyrko6vNTT8QlWqb0hacoCy4qtkDN69gNblDpO-tARe_8Z26i24PPnAE_OOu0GlzwWbCZD3voMjVth3jYKR9S6FWX6dDvwuhNukYXVnUJln_1Cn08Pb6vN3nz9vyyXjW5LhkeclYZQyqmueCqNoJAXRbWYlECgALb1i21zHBetUYDZyVtecsItUYTTVXLyyt0N__dqk7uoutVPMignNysGtn7rZeY1qKYck8m-HaGdzH8jJAG2bukoeuUhzAmWfCKVqQSrJzQfEZ1DClFsKfnBMujZTlZlkfL8mh54sXM23EYIyTtwGuQ89SDcdp5-Of2F_YohTw</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Lemos, Jade Milhomem</creator><creator>Brito da Silva, Meryck Felipe</creator><creator>dos Santos Carvalho, Alexandra Maria</creator><creator>Vicente Gil, Henric Pietro</creator><creator>Fiaia Costa, Vinícius Alexandre</creator><creator>Andrade, Carolina Horta</creator><creator>Braga, Rodolpho Campos</creator><creator>Grellier, Philippe</creator><creator>Muratov, Eugene N</creator><creator>Charneau, Sébastien</creator><creator>Moreira-Filho, José Teófilo</creator><creator>Dourado Bastos, Izabela Marques</creator><creator>Neves, Bruno Junior</creator><general>Newlands Press Ltd</general><general>Future Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6812-4005</orcidid><orcidid>https://orcid.org/0000-0003-4969-3015</orcidid><orcidid>https://orcid.org/0000-0002-3317-9479</orcidid><orcidid>https://orcid.org/0000-0003-4153-0465</orcidid><orcidid>https://orcid.org/0000-0003-0101-1492</orcidid><orcidid>https://orcid.org/0000-0002-9364-7289</orcidid><orcidid>https://orcid.org/0000-0002-2785-4255</orcidid><orcidid>https://orcid.org/0000-0002-1309-8743</orcidid><orcidid>https://orcid.org/0000-0003-4616-7036</orcidid><orcidid>https://orcid.org/0000-0002-6829-6448</orcidid><orcidid>https://orcid.org/0000-0002-0777-280X</orcidid><orcidid>https://orcid.org/0000-0003-3814-3464</orcidid><orcidid>https://orcid.org/0000-0001-6479-5963</orcidid></search><sort><creationdate>20230801</creationdate><title>Multitask learning-driven identification of novel antitrypanosomal compounds</title><author>Lemos, Jade Milhomem ; Brito da Silva, Meryck Felipe ; dos Santos Carvalho, Alexandra Maria ; Vicente Gil, Henric Pietro ; Fiaia Costa, Vinícius Alexandre ; Andrade, Carolina Horta ; Braga, Rodolpho Campos ; Grellier, Philippe ; Muratov, Eugene N ; Charneau, Sébastien ; Moreira-Filho, José Teófilo ; Dourado Bastos, Izabela Marques ; Neves, Bruno Junior</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-56dd165c898a7d91e732ff093eeeaefb7b4f5d886bdce8534b8b514fdc1c4ab83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical Sciences</topic><topic>Computer Science</topic><topic>deep learning</topic><topic>Life Sciences</topic><topic>low-data regimes</topic><topic>model explainability</topic><topic>neglected tropical diseases</topic><topic>QSAR</topic><topic>trypanosomatids</topic><topic>virtual screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lemos, Jade Milhomem</creatorcontrib><creatorcontrib>Brito da Silva, Meryck Felipe</creatorcontrib><creatorcontrib>dos Santos Carvalho, Alexandra Maria</creatorcontrib><creatorcontrib>Vicente Gil, Henric Pietro</creatorcontrib><creatorcontrib>Fiaia Costa, Vinícius Alexandre</creatorcontrib><creatorcontrib>Andrade, Carolina Horta</creatorcontrib><creatorcontrib>Braga, Rodolpho Campos</creatorcontrib><creatorcontrib>Grellier, Philippe</creatorcontrib><creatorcontrib>Muratov, Eugene N</creatorcontrib><creatorcontrib>Charneau, Sébastien</creatorcontrib><creatorcontrib>Moreira-Filho, José Teófilo</creatorcontrib><creatorcontrib>Dourado Bastos, Izabela Marques</creatorcontrib><creatorcontrib>Neves, Bruno Junior</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Future medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lemos, Jade Milhomem</au><au>Brito da Silva, Meryck Felipe</au><au>dos Santos Carvalho, Alexandra Maria</au><au>Vicente Gil, Henric Pietro</au><au>Fiaia Costa, Vinícius Alexandre</au><au>Andrade, Carolina Horta</au><au>Braga, Rodolpho Campos</au><au>Grellier, Philippe</au><au>Muratov, Eugene N</au><au>Charneau, Sébastien</au><au>Moreira-Filho, José Teófilo</au><au>Dourado Bastos, Izabela Marques</au><au>Neves, Bruno Junior</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multitask learning-driven identification of novel antitrypanosomal compounds</atitle><jtitle>Future medicinal chemistry</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>15</volume><issue>16</issue><spage>1449</spage><epage>1467</epage><pages>1449-1467</pages><issn>1756-8919</issn><eissn>1756-8927</eissn><abstract>Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries, making the need for novel drugs urgent. Therefore, an explainable multitask pipeline to profile the activity of compounds against three trypanosomes ( and ) were created. These models successfully discovered four new experimental hits ( , , and ). Among them, showed promising results, with IC values ranging 0.01–0.072 μM and selectivity indices &gt;10,000. These results demonstrate that the multitask protocol offers predictivity and interpretability in the virtual screening of new antitrypanosomal compounds and has the potential to improve hit rates in Chagas and human African trypanosomiasis projects. Improved approaches to antitrypanosomal drug discovery are needed to boost hit rates. To address this issue, multitask models were created to profile the activity of compounds against three trypanosomes. These models facilitated the discovery of four new antitrypanosomal hits.</abstract><pub>Newlands Press Ltd</pub><doi>10.4155/fmc-2023-0074</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6812-4005</orcidid><orcidid>https://orcid.org/0000-0003-4969-3015</orcidid><orcidid>https://orcid.org/0000-0002-3317-9479</orcidid><orcidid>https://orcid.org/0000-0003-4153-0465</orcidid><orcidid>https://orcid.org/0000-0003-0101-1492</orcidid><orcidid>https://orcid.org/0000-0002-9364-7289</orcidid><orcidid>https://orcid.org/0000-0002-2785-4255</orcidid><orcidid>https://orcid.org/0000-0002-1309-8743</orcidid><orcidid>https://orcid.org/0000-0003-4616-7036</orcidid><orcidid>https://orcid.org/0000-0002-6829-6448</orcidid><orcidid>https://orcid.org/0000-0002-0777-280X</orcidid><orcidid>https://orcid.org/0000-0003-3814-3464</orcidid><orcidid>https://orcid.org/0000-0001-6479-5963</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1756-8919
ispartof Future medicinal chemistry, 2023-08, Vol.15 (16), p.1449-1467
issn 1756-8919
1756-8927
language eng
recordid cdi_hal_primary_oai_HAL_mnhn_04792929v1
source PubMed Central
subjects Chemical Sciences
Computer Science
deep learning
Life Sciences
low-data regimes
model explainability
neglected tropical diseases
QSAR
trypanosomatids
virtual screening
title Multitask learning-driven identification of novel antitrypanosomal compounds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multitask%20learning-driven%20identification%20of%20novel%20antitrypanosomal%20compounds&rft.jtitle=Future%20medicinal%20chemistry&rft.au=Lemos,%20Jade%20Milhomem&rft.date=2023-08-01&rft.volume=15&rft.issue=16&rft.spage=1449&rft.epage=1467&rft.pages=1449-1467&rft.issn=1756-8919&rft.eissn=1756-8927&rft_id=info:doi/10.4155/fmc-2023-0074&rft_dat=%3Cproquest_hal_p%3E2864616953%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-56dd165c898a7d91e732ff093eeeaefb7b4f5d886bdce8534b8b514fdc1c4ab83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2864616953&rft_id=info:pmid/&rfr_iscdi=true