Loading…
Multitask learning-driven identification of novel antitrypanosomal compounds
Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries, making the need for novel drugs urgent. Therefore, an explainable multitask pipeline to profile the activity of compounds against three trypanosomes ( and ) were...
Saved in:
Published in: | Future medicinal chemistry 2023-08, Vol.15 (16), p.1449-1467 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c350t-56dd165c898a7d91e732ff093eeeaefb7b4f5d886bdce8534b8b514fdc1c4ab83 |
container_end_page | 1467 |
container_issue | 16 |
container_start_page | 1449 |
container_title | Future medicinal chemistry |
container_volume | 15 |
creator | Lemos, Jade Milhomem Brito da Silva, Meryck Felipe dos Santos Carvalho, Alexandra Maria Vicente Gil, Henric Pietro Fiaia Costa, Vinícius Alexandre Andrade, Carolina Horta Braga, Rodolpho Campos Grellier, Philippe Muratov, Eugene N Charneau, Sébastien Moreira-Filho, José Teófilo Dourado Bastos, Izabela Marques Neves, Bruno Junior |
description | Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries, making the need for novel drugs urgent.
Therefore, an explainable multitask pipeline to profile the activity of compounds against three trypanosomes (
and
) were created. These models successfully discovered four new experimental hits (
,
,
and
). Among them,
showed promising results, with IC
values ranging 0.01–0.072 μM and selectivity indices >10,000.
These results demonstrate that the multitask protocol offers predictivity and interpretability in the virtual screening of new antitrypanosomal compounds and has the potential to improve hit rates in Chagas and human African trypanosomiasis projects.
Improved approaches to antitrypanosomal drug discovery are needed to boost hit rates. To address this issue, multitask models were created to profile the activity of compounds against three trypanosomes. These models facilitated the discovery of four new antitrypanosomal hits. |
doi_str_mv | 10.4155/fmc-2023-0074 |
format | article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_mnhn_04792929v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2864616953</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-56dd165c898a7d91e732ff093eeeaefb7b4f5d886bdce8534b8b514fdc1c4ab83</originalsourceid><addsrcrecordid>eNp1kD1PwzAQQC0EEhV0ZM-IkAJ2Yif2WFVAkYJYYLYc-0wNiV3spFL_PamCunE33Ife3fAQuiH4nhLGHmyv8wIXZY5xTc_QgtSsyrko6vNTT8QlWqb0hacoCy4qtkDN69gNblDpO-tARe_8Z26i24PPnAE_OOu0GlzwWbCZD3voMjVth3jYKR9S6FWX6dDvwuhNukYXVnUJln_1Cn08Pb6vN3nz9vyyXjW5LhkeclYZQyqmueCqNoJAXRbWYlECgALb1i21zHBetUYDZyVtecsItUYTTVXLyyt0N__dqk7uoutVPMignNysGtn7rZeY1qKYck8m-HaGdzH8jJAG2bukoeuUhzAmWfCKVqQSrJzQfEZ1DClFsKfnBMujZTlZlkfL8mh54sXM23EYIyTtwGuQ89SDcdp5-Of2F_YohTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2864616953</pqid></control><display><type>article</type><title>Multitask learning-driven identification of novel antitrypanosomal compounds</title><source>PubMed Central</source><creator>Lemos, Jade Milhomem ; Brito da Silva, Meryck Felipe ; dos Santos Carvalho, Alexandra Maria ; Vicente Gil, Henric Pietro ; Fiaia Costa, Vinícius Alexandre ; Andrade, Carolina Horta ; Braga, Rodolpho Campos ; Grellier, Philippe ; Muratov, Eugene N ; Charneau, Sébastien ; Moreira-Filho, José Teófilo ; Dourado Bastos, Izabela Marques ; Neves, Bruno Junior</creator><creatorcontrib>Lemos, Jade Milhomem ; Brito da Silva, Meryck Felipe ; dos Santos Carvalho, Alexandra Maria ; Vicente Gil, Henric Pietro ; Fiaia Costa, Vinícius Alexandre ; Andrade, Carolina Horta ; Braga, Rodolpho Campos ; Grellier, Philippe ; Muratov, Eugene N ; Charneau, Sébastien ; Moreira-Filho, José Teófilo ; Dourado Bastos, Izabela Marques ; Neves, Bruno Junior</creatorcontrib><description>Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries, making the need for novel drugs urgent.
Therefore, an explainable multitask pipeline to profile the activity of compounds against three trypanosomes (
and
) were created. These models successfully discovered four new experimental hits (
,
,
and
). Among them,
showed promising results, with IC
values ranging 0.01–0.072 μM and selectivity indices >10,000.
These results demonstrate that the multitask protocol offers predictivity and interpretability in the virtual screening of new antitrypanosomal compounds and has the potential to improve hit rates in Chagas and human African trypanosomiasis projects.
Improved approaches to antitrypanosomal drug discovery are needed to boost hit rates. To address this issue, multitask models were created to profile the activity of compounds against three trypanosomes. These models facilitated the discovery of four new antitrypanosomal hits.</description><identifier>ISSN: 1756-8919</identifier><identifier>EISSN: 1756-8927</identifier><identifier>DOI: 10.4155/fmc-2023-0074</identifier><language>eng</language><publisher>Newlands Press Ltd</publisher><subject>Chemical Sciences ; Computer Science ; deep learning ; Life Sciences ; low-data regimes ; model explainability ; neglected tropical diseases ; QSAR ; trypanosomatids ; virtual screening</subject><ispartof>Future medicinal chemistry, 2023-08, Vol.15 (16), p.1449-1467</ispartof><rights>2023 Newlands Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c350t-56dd165c898a7d91e732ff093eeeaefb7b4f5d886bdce8534b8b514fdc1c4ab83</cites><orcidid>0000-0002-6812-4005 ; 0000-0003-4969-3015 ; 0000-0002-3317-9479 ; 0000-0003-4153-0465 ; 0000-0003-0101-1492 ; 0000-0002-9364-7289 ; 0000-0002-2785-4255 ; 0000-0002-1309-8743 ; 0000-0003-4616-7036 ; 0000-0002-6829-6448 ; 0000-0002-0777-280X ; 0000-0003-3814-3464 ; 0000-0001-6479-5963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://mnhn.hal.science/mnhn-04792929$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lemos, Jade Milhomem</creatorcontrib><creatorcontrib>Brito da Silva, Meryck Felipe</creatorcontrib><creatorcontrib>dos Santos Carvalho, Alexandra Maria</creatorcontrib><creatorcontrib>Vicente Gil, Henric Pietro</creatorcontrib><creatorcontrib>Fiaia Costa, Vinícius Alexandre</creatorcontrib><creatorcontrib>Andrade, Carolina Horta</creatorcontrib><creatorcontrib>Braga, Rodolpho Campos</creatorcontrib><creatorcontrib>Grellier, Philippe</creatorcontrib><creatorcontrib>Muratov, Eugene N</creatorcontrib><creatorcontrib>Charneau, Sébastien</creatorcontrib><creatorcontrib>Moreira-Filho, José Teófilo</creatorcontrib><creatorcontrib>Dourado Bastos, Izabela Marques</creatorcontrib><creatorcontrib>Neves, Bruno Junior</creatorcontrib><title>Multitask learning-driven identification of novel antitrypanosomal compounds</title><title>Future medicinal chemistry</title><description>Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries, making the need for novel drugs urgent.
Therefore, an explainable multitask pipeline to profile the activity of compounds against three trypanosomes (
and
) were created. These models successfully discovered four new experimental hits (
,
,
and
). Among them,
showed promising results, with IC
values ranging 0.01–0.072 μM and selectivity indices >10,000.
These results demonstrate that the multitask protocol offers predictivity and interpretability in the virtual screening of new antitrypanosomal compounds and has the potential to improve hit rates in Chagas and human African trypanosomiasis projects.
Improved approaches to antitrypanosomal drug discovery are needed to boost hit rates. To address this issue, multitask models were created to profile the activity of compounds against three trypanosomes. These models facilitated the discovery of four new antitrypanosomal hits.</description><subject>Chemical Sciences</subject><subject>Computer Science</subject><subject>deep learning</subject><subject>Life Sciences</subject><subject>low-data regimes</subject><subject>model explainability</subject><subject>neglected tropical diseases</subject><subject>QSAR</subject><subject>trypanosomatids</subject><subject>virtual screening</subject><issn>1756-8919</issn><issn>1756-8927</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQQC0EEhV0ZM-IkAJ2Yif2WFVAkYJYYLYc-0wNiV3spFL_PamCunE33Ife3fAQuiH4nhLGHmyv8wIXZY5xTc_QgtSsyrko6vNTT8QlWqb0hacoCy4qtkDN69gNblDpO-tARe_8Z26i24PPnAE_OOu0GlzwWbCZD3voMjVth3jYKR9S6FWX6dDvwuhNukYXVnUJln_1Cn08Pb6vN3nz9vyyXjW5LhkeclYZQyqmueCqNoJAXRbWYlECgALb1i21zHBetUYDZyVtecsItUYTTVXLyyt0N__dqk7uoutVPMignNysGtn7rZeY1qKYck8m-HaGdzH8jJAG2bukoeuUhzAmWfCKVqQSrJzQfEZ1DClFsKfnBMujZTlZlkfL8mh54sXM23EYIyTtwGuQ89SDcdp5-Of2F_YohTw</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Lemos, Jade Milhomem</creator><creator>Brito da Silva, Meryck Felipe</creator><creator>dos Santos Carvalho, Alexandra Maria</creator><creator>Vicente Gil, Henric Pietro</creator><creator>Fiaia Costa, Vinícius Alexandre</creator><creator>Andrade, Carolina Horta</creator><creator>Braga, Rodolpho Campos</creator><creator>Grellier, Philippe</creator><creator>Muratov, Eugene N</creator><creator>Charneau, Sébastien</creator><creator>Moreira-Filho, José Teófilo</creator><creator>Dourado Bastos, Izabela Marques</creator><creator>Neves, Bruno Junior</creator><general>Newlands Press Ltd</general><general>Future Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-6812-4005</orcidid><orcidid>https://orcid.org/0000-0003-4969-3015</orcidid><orcidid>https://orcid.org/0000-0002-3317-9479</orcidid><orcidid>https://orcid.org/0000-0003-4153-0465</orcidid><orcidid>https://orcid.org/0000-0003-0101-1492</orcidid><orcidid>https://orcid.org/0000-0002-9364-7289</orcidid><orcidid>https://orcid.org/0000-0002-2785-4255</orcidid><orcidid>https://orcid.org/0000-0002-1309-8743</orcidid><orcidid>https://orcid.org/0000-0003-4616-7036</orcidid><orcidid>https://orcid.org/0000-0002-6829-6448</orcidid><orcidid>https://orcid.org/0000-0002-0777-280X</orcidid><orcidid>https://orcid.org/0000-0003-3814-3464</orcidid><orcidid>https://orcid.org/0000-0001-6479-5963</orcidid></search><sort><creationdate>20230801</creationdate><title>Multitask learning-driven identification of novel antitrypanosomal compounds</title><author>Lemos, Jade Milhomem ; Brito da Silva, Meryck Felipe ; dos Santos Carvalho, Alexandra Maria ; Vicente Gil, Henric Pietro ; Fiaia Costa, Vinícius Alexandre ; Andrade, Carolina Horta ; Braga, Rodolpho Campos ; Grellier, Philippe ; Muratov, Eugene N ; Charneau, Sébastien ; Moreira-Filho, José Teófilo ; Dourado Bastos, Izabela Marques ; Neves, Bruno Junior</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-56dd165c898a7d91e732ff093eeeaefb7b4f5d886bdce8534b8b514fdc1c4ab83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chemical Sciences</topic><topic>Computer Science</topic><topic>deep learning</topic><topic>Life Sciences</topic><topic>low-data regimes</topic><topic>model explainability</topic><topic>neglected tropical diseases</topic><topic>QSAR</topic><topic>trypanosomatids</topic><topic>virtual screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lemos, Jade Milhomem</creatorcontrib><creatorcontrib>Brito da Silva, Meryck Felipe</creatorcontrib><creatorcontrib>dos Santos Carvalho, Alexandra Maria</creatorcontrib><creatorcontrib>Vicente Gil, Henric Pietro</creatorcontrib><creatorcontrib>Fiaia Costa, Vinícius Alexandre</creatorcontrib><creatorcontrib>Andrade, Carolina Horta</creatorcontrib><creatorcontrib>Braga, Rodolpho Campos</creatorcontrib><creatorcontrib>Grellier, Philippe</creatorcontrib><creatorcontrib>Muratov, Eugene N</creatorcontrib><creatorcontrib>Charneau, Sébastien</creatorcontrib><creatorcontrib>Moreira-Filho, José Teófilo</creatorcontrib><creatorcontrib>Dourado Bastos, Izabela Marques</creatorcontrib><creatorcontrib>Neves, Bruno Junior</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Future medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lemos, Jade Milhomem</au><au>Brito da Silva, Meryck Felipe</au><au>dos Santos Carvalho, Alexandra Maria</au><au>Vicente Gil, Henric Pietro</au><au>Fiaia Costa, Vinícius Alexandre</au><au>Andrade, Carolina Horta</au><au>Braga, Rodolpho Campos</au><au>Grellier, Philippe</au><au>Muratov, Eugene N</au><au>Charneau, Sébastien</au><au>Moreira-Filho, José Teófilo</au><au>Dourado Bastos, Izabela Marques</au><au>Neves, Bruno Junior</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multitask learning-driven identification of novel antitrypanosomal compounds</atitle><jtitle>Future medicinal chemistry</jtitle><date>2023-08-01</date><risdate>2023</risdate><volume>15</volume><issue>16</issue><spage>1449</spage><epage>1467</epage><pages>1449-1467</pages><issn>1756-8919</issn><eissn>1756-8927</eissn><abstract>Chagas disease and human African trypanosomiasis cause substantial death and morbidity, particularly in low- and middle-income countries, making the need for novel drugs urgent.
Therefore, an explainable multitask pipeline to profile the activity of compounds against three trypanosomes (
and
) were created. These models successfully discovered four new experimental hits (
,
,
and
). Among them,
showed promising results, with IC
values ranging 0.01–0.072 μM and selectivity indices >10,000.
These results demonstrate that the multitask protocol offers predictivity and interpretability in the virtual screening of new antitrypanosomal compounds and has the potential to improve hit rates in Chagas and human African trypanosomiasis projects.
Improved approaches to antitrypanosomal drug discovery are needed to boost hit rates. To address this issue, multitask models were created to profile the activity of compounds against three trypanosomes. These models facilitated the discovery of four new antitrypanosomal hits.</abstract><pub>Newlands Press Ltd</pub><doi>10.4155/fmc-2023-0074</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6812-4005</orcidid><orcidid>https://orcid.org/0000-0003-4969-3015</orcidid><orcidid>https://orcid.org/0000-0002-3317-9479</orcidid><orcidid>https://orcid.org/0000-0003-4153-0465</orcidid><orcidid>https://orcid.org/0000-0003-0101-1492</orcidid><orcidid>https://orcid.org/0000-0002-9364-7289</orcidid><orcidid>https://orcid.org/0000-0002-2785-4255</orcidid><orcidid>https://orcid.org/0000-0002-1309-8743</orcidid><orcidid>https://orcid.org/0000-0003-4616-7036</orcidid><orcidid>https://orcid.org/0000-0002-6829-6448</orcidid><orcidid>https://orcid.org/0000-0002-0777-280X</orcidid><orcidid>https://orcid.org/0000-0003-3814-3464</orcidid><orcidid>https://orcid.org/0000-0001-6479-5963</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1756-8919 |
ispartof | Future medicinal chemistry, 2023-08, Vol.15 (16), p.1449-1467 |
issn | 1756-8919 1756-8927 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_mnhn_04792929v1 |
source | PubMed Central |
subjects | Chemical Sciences Computer Science deep learning Life Sciences low-data regimes model explainability neglected tropical diseases QSAR trypanosomatids virtual screening |
title | Multitask learning-driven identification of novel antitrypanosomal compounds |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T10%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multitask%20learning-driven%20identification%20of%20novel%20antitrypanosomal%20compounds&rft.jtitle=Future%20medicinal%20chemistry&rft.au=Lemos,%20Jade%20Milhomem&rft.date=2023-08-01&rft.volume=15&rft.issue=16&rft.spage=1449&rft.epage=1467&rft.pages=1449-1467&rft.issn=1756-8919&rft.eissn=1756-8927&rft_id=info:doi/10.4155/fmc-2023-0074&rft_dat=%3Cproquest_hal_p%3E2864616953%3C/proquest_hal_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c350t-56dd165c898a7d91e732ff093eeeaefb7b4f5d886bdce8534b8b514fdc1c4ab83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2864616953&rft_id=info:pmid/&rfr_iscdi=true |