Loading…

Quantum molecular simulation of the H abstraction at C4′ of DNA sugar moiety by the free radical OH

The simulation of the H abstraction at the C4 site of the DNA deoxyribose by the hydroxyl radical was conducted using a supermolecular model composed of a sodium compensated-5 pdCp3 molecule in interaction with OH. The mechanism of the H abstraction is discussed on the basis of various ab initio qua...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular structure. Theochem 1999-11, Vol.491 (1-3), p.237-247
Main Authors: Hamza, A, Broch, H, Vasilescu, D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c204t-236a61ac7714f87e8f06800fd56dca0fd07344b30394d251b3ace8a229360f713
cites cdi_FETCH-LOGICAL-c204t-236a61ac7714f87e8f06800fd56dca0fd07344b30394d251b3ace8a229360f713
container_end_page 247
container_issue 1-3
container_start_page 237
container_title Journal of molecular structure. Theochem
container_volume 491
creator Hamza, A
Broch, H
Vasilescu, D
description The simulation of the H abstraction at the C4 site of the DNA deoxyribose by the hydroxyl radical was conducted using a supermolecular model composed of a sodium compensated-5 pdCp3 molecule in interaction with OH. The mechanism of the H abstraction is discussed on the basis of various ab initio quantum molecular computations and the obtained Molecular Electrostatic Potentials, frontier orbitals and total spin density. Analysis of the results shows that the hydrogen abstraction by OH at C4 position on the deoxyribose and H2O formation is a bimolecular transfer reaction in agreement with a diffusion controlled process.
doi_str_mv 10.1016/S0166-1280(99)00126-8
format article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_pasteur_02052160v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_pasteur_02052160v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c204t-236a61ac7714f87e8f06800fd56dca0fd07344b30394d251b3ace8a229360f713</originalsourceid><addsrcrecordid>eNo9kEtOwzAQhr0AifI4ApKXsAiM7cRJllV5BKmiQsDamjg2DUqaynaQuuNMHImTkKSom_ml_zGLj5BLBjcMmLx9HY6MGM_gKs-vARiXUXZEZgf7hJx6_wkAXACfEfPS4yb0LW27xui-QUd93Q4a6m5DO0vD2tCCYumDQz2ZGOgi_v3-GdO75zn1_cewarvahB0td9PCOmOow6rW2NBVcU6OLTbeXPzrGXl_uH9bFNFy9fi0mC8jzSEOERcSJUOdpiy2WWoyCzIDsFUiK42DQiriuBQg8rjiCSsFapMh57mQYFMmzki0_7vGRm1d3aLbqQ5rVcyXaos-mN4p4JBwJuFr7Cf7vnad987Yw4iBGnmqiacawak8VxNPlYk_GmRqVQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Quantum molecular simulation of the H abstraction at C4′ of DNA sugar moiety by the free radical OH</title><source>Elsevier</source><creator>Hamza, A ; Broch, H ; Vasilescu, D</creator><creatorcontrib>Hamza, A ; Broch, H ; Vasilescu, D</creatorcontrib><description>The simulation of the H abstraction at the C4 site of the DNA deoxyribose by the hydroxyl radical was conducted using a supermolecular model composed of a sodium compensated-5 pdCp3 molecule in interaction with OH. The mechanism of the H abstraction is discussed on the basis of various ab initio quantum molecular computations and the obtained Molecular Electrostatic Potentials, frontier orbitals and total spin density. Analysis of the results shows that the hydrogen abstraction by OH at C4 position on the deoxyribose and H2O formation is a bimolecular transfer reaction in agreement with a diffusion controlled process.</description><identifier>ISSN: 0166-1280</identifier><identifier>DOI: 10.1016/S0166-1280(99)00126-8</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Biochemistry, Molecular Biology ; Life Sciences</subject><ispartof>Journal of molecular structure. Theochem, 1999-11, Vol.491 (1-3), p.237-247</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c204t-236a61ac7714f87e8f06800fd56dca0fd07344b30394d251b3ace8a229360f713</citedby><cites>FETCH-LOGICAL-c204t-236a61ac7714f87e8f06800fd56dca0fd07344b30394d251b3ace8a229360f713</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27903,27904</link.rule.ids><backlink>$$Uhttps://riip.hal.science/pasteur-02052160$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hamza, A</creatorcontrib><creatorcontrib>Broch, H</creatorcontrib><creatorcontrib>Vasilescu, D</creatorcontrib><title>Quantum molecular simulation of the H abstraction at C4′ of DNA sugar moiety by the free radical OH</title><title>Journal of molecular structure. Theochem</title><description>The simulation of the H abstraction at the C4 site of the DNA deoxyribose by the hydroxyl radical was conducted using a supermolecular model composed of a sodium compensated-5 pdCp3 molecule in interaction with OH. The mechanism of the H abstraction is discussed on the basis of various ab initio quantum molecular computations and the obtained Molecular Electrostatic Potentials, frontier orbitals and total spin density. Analysis of the results shows that the hydrogen abstraction by OH at C4 position on the deoxyribose and H2O formation is a bimolecular transfer reaction in agreement with a diffusion controlled process.</description><subject>Biochemistry, Molecular Biology</subject><subject>Life Sciences</subject><issn>0166-1280</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNo9kEtOwzAQhr0AifI4ApKXsAiM7cRJllV5BKmiQsDamjg2DUqaynaQuuNMHImTkKSom_ml_zGLj5BLBjcMmLx9HY6MGM_gKs-vARiXUXZEZgf7hJx6_wkAXACfEfPS4yb0LW27xui-QUd93Q4a6m5DO0vD2tCCYumDQz2ZGOgi_v3-GdO75zn1_cewarvahB0td9PCOmOow6rW2NBVcU6OLTbeXPzrGXl_uH9bFNFy9fi0mC8jzSEOERcSJUOdpiy2WWoyCzIDsFUiK42DQiriuBQg8rjiCSsFapMh57mQYFMmzki0_7vGRm1d3aLbqQ5rVcyXaos-mN4p4JBwJuFr7Cf7vnad987Yw4iBGnmqiacawak8VxNPlYk_GmRqVQ</recordid><startdate>19991119</startdate><enddate>19991119</enddate><creator>Hamza, A</creator><creator>Broch, H</creator><creator>Vasilescu, D</creator><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope></search><sort><creationdate>19991119</creationdate><title>Quantum molecular simulation of the H abstraction at C4′ of DNA sugar moiety by the free radical OH</title><author>Hamza, A ; Broch, H ; Vasilescu, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c204t-236a61ac7714f87e8f06800fd56dca0fd07344b30394d251b3ace8a229360f713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Biochemistry, Molecular Biology</topic><topic>Life Sciences</topic><toplevel>online_resources</toplevel><creatorcontrib>Hamza, A</creatorcontrib><creatorcontrib>Broch, H</creatorcontrib><creatorcontrib>Vasilescu, D</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of molecular structure. Theochem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamza, A</au><au>Broch, H</au><au>Vasilescu, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum molecular simulation of the H abstraction at C4′ of DNA sugar moiety by the free radical OH</atitle><jtitle>Journal of molecular structure. Theochem</jtitle><date>1999-11-19</date><risdate>1999</risdate><volume>491</volume><issue>1-3</issue><spage>237</spage><epage>247</epage><pages>237-247</pages><issn>0166-1280</issn><abstract>The simulation of the H abstraction at the C4 site of the DNA deoxyribose by the hydroxyl radical was conducted using a supermolecular model composed of a sodium compensated-5 pdCp3 molecule in interaction with OH. The mechanism of the H abstraction is discussed on the basis of various ab initio quantum molecular computations and the obtained Molecular Electrostatic Potentials, frontier orbitals and total spin density. Analysis of the results shows that the hydrogen abstraction by OH at C4 position on the deoxyribose and H2O formation is a bimolecular transfer reaction in agreement with a diffusion controlled process.</abstract><pub>Elsevier</pub><doi>10.1016/S0166-1280(99)00126-8</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0166-1280
ispartof Journal of molecular structure. Theochem, 1999-11, Vol.491 (1-3), p.237-247
issn 0166-1280
language eng
recordid cdi_hal_primary_oai_HAL_pasteur_02052160v1
source Elsevier
subjects Biochemistry, Molecular Biology
Life Sciences
title Quantum molecular simulation of the H abstraction at C4′ of DNA sugar moiety by the free radical OH
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A12%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20molecular%20simulation%20of%20the%20H%20abstraction%20at%20C4%E2%80%B2%20of%20DNA%20sugar%20moiety%20by%20the%20free%20radical%20OH&rft.jtitle=Journal%20of%20molecular%20structure.%20Theochem&rft.au=Hamza,%20A&rft.date=1999-11-19&rft.volume=491&rft.issue=1-3&rft.spage=237&rft.epage=247&rft.pages=237-247&rft.issn=0166-1280&rft_id=info:doi/10.1016/S0166-1280(99)00126-8&rft_dat=%3Chal_cross%3Eoai_HAL_pasteur_02052160v1%3C/hal_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c204t-236a61ac7714f87e8f06800fd56dca0fd07344b30394d251b3ace8a229360f713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true