Loading…

Matching the β-oxidation gene repertoire with the wide diversity of fatty acids

Bacteria can use fatty acids (FAs) from their environment as carbon and energy source. This catabolism is performed by the enzymes of the well-known β-oxidation machinery, producing reducing power and releasing acetyl-CoA that can feed the tricarboxylic acid cycle. FAs are extremely diverse: they ca...

Full description

Saved in:
Bibliographic Details
Published in:Current opinion in microbiology 2024-02, Vol.77, p.102402-102402, Article 102402
Main Authors: Schiaffi, Veronica, Barras, Frédéric, Bouveret, Emmanuelle
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bacteria can use fatty acids (FAs) from their environment as carbon and energy source. This catabolism is performed by the enzymes of the well-known β-oxidation machinery, producing reducing power and releasing acetyl-CoA that can feed the tricarboxylic acid cycle. FAs are extremely diverse: they can be saturated or (poly)unsaturated and are found in different sizes. The need to degrade such a wide variety of compounds may explain why so many seemingly homologous enzymes are found for each step of the β-oxidation cycle. In addition, the degradation of unsaturated fatty acids requires specific auxiliary enzymes for isomerase and reductase reactions. Furthermore, the β-oxidation cycle can be blocked by dead-end products, which are taken care of by acyl-CoA thioesterases. Yet, the functional characterization of the enzymes required for the degradation of the full diversity of FAs remains to be documented in most bacteria.
ISSN:1369-5274
1879-0364
1369-5274
DOI:10.1016/j.mib.2023.102402