Loading…

Electroless Growth of Silver Nanoparticles into Mesostructured Silica Block Copolymer Films

Silver nanoparticles and silver nanowires have been grown inside mesostructured silica films obtained from block copolymers using two successive reduction steps: the first one involves a sodium borohydride reduction or a photoreduction of silver nitrate contained in the film, and the second one cons...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2010-06, Vol.26 (11), p.8729-8736
Main Authors: Bois, Laurence, Chassagneux, Fernand, Desroches, Cédric, Battie, Yann, Destouches, Nathalie, Gilon, Nicole, Parola, Stéphane, Stéphan, Olivier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Silver nanoparticles and silver nanowires have been grown inside mesostructured silica films obtained from block copolymers using two successive reduction steps: the first one involves a sodium borohydride reduction or a photoreduction of silver nitrate contained in the film, and the second one consists of a silver deposit on the primary nanoparticles, carried out by silver ion solution reduction with hydroxylamine chloride. We have demonstrated that the F127 block copolymer ((PEO)106(PPO)70(PEO)106), “F type”, mesostructured silica film is a suitable “soft” template for the fabrication of spherical silver nanoparticles arrays. Silver spheres grow from 7 to 11 nm upon the second reduction step. As a consequence, a red shift of the surface plasmon resonance associated with metallic silver has been observed and attributed to plasmonic coupling between particles. Using a P123 block copolymer ((PEO)20(PPO)70(PEO)20), “P type”, mesostructured silica film, we have obtained silver nanowires with typical dimension of 10 nm × 100 nm. The corresponding surface plasmon resonance is blue-shifted. The hydroxylamine chloride treatment appears to be efficient only when a previous chemical reduction is performed, assuming that the first sodium borohydride reduction induces a high concentration of silver nuclei in the first layer of the porous silica (film/air interface), which explains their reactivity for further growth.
ISSN:0743-7463
1520-5827
DOI:10.1021/la904491v