Loading…

Near infrared spectro-interferometer usingfemtosecond laser written GLS embeddedwaveguides and nano-scatterers

Guided optics spectrometers can be essentially classified into two main families:based on Fourier transform or dispersion. In the first case, an interferogram generated insidean optical waveguide and containing the spectral information is sampled using spatiallydistributed nanodetectors. These scatt...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2017-04, Vol.25 (7)
Main Authors: Martin, Guillermo, Bhuyan, Manoj, Troles, Johann, d'Amico, Ciro, Stoian, Razvan, Lecoarer, Etienne
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 7
container_start_page
container_title Optics express
container_volume 25
creator Martin, Guillermo
Bhuyan, Manoj
Troles, Johann
d'Amico, Ciro
Stoian, Razvan
Lecoarer, Etienne
description Guided optics spectrometers can be essentially classified into two main families:based on Fourier transform or dispersion. In the first case, an interferogram generated insidean optical waveguide and containing the spectral information is sampled using spatiallydistributed nanodetectors. These scatter quasi-non-perturbingly light into the detector that isin contact with the waveguide, helping to reconstruct the stationary wave. A dedicated FFTprocessing is needed in order to recover the spectrum with high resolution but limited spectralrange. Another way is to directly disperse the different wavelengths to different pixels, eitherintroducing differential optical path in the same propagation plane (multiple Mach-Zehnderinterferometers or Arrayed Waveguides Gratings), or using a periodic structure toperpendicularly extract the optical signal confined in a waveguide (photonic crystals orsurface gratings), and by means of a relay optics, generate the spectrum on the Fourier planeof the lens, where the detector is placed. Following this second approach, we present a laserfabricatedhigh-resolution compact dispersive spectro-interferometer (R>2500, 30nm spectralrange at λ = 1560nm), using four parallel waveguides that can provide up to three nonredundantinterferometric combinations. The device is based on guided optics technologyembedded in bulk optical glass. Ultrafast laser photoinscription with 3D laser indexengineering in bulk chalcogenide Gallium Lanthanium Sulfide glass is utilized to fabricatelarge mode area waveguides in an evanescently-coupled hexagonal multicore arrayconfiguration, followed by subsequent realization of nanoscaled scattering centers via onedimensional nanovoids across the waveguide, written in a non-diffractive Besselconfiguration. A simple relay optics, with limited optical aberrations, reimages the diffractedsignal on the focal plane array, leading to a robust, easy to align instrument.
doi_str_mv 10.1364/OE.25.008386
format article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_ujm_01534570v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_ujm_01534570v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_ujm_01534570v13</originalsourceid><addsrcrecordid>eNqVyrFOwzAUhWELgWgLbDyAV4YEu3GaZESo0KGiA-zWJb4prmK7unZa8fZ4YGBlOr-OPsbupShltVKPu3W5rEsh2qpdXbC5FJ0qlGibyz89Y4sYD0JI1XTNNZstMxZdLefMvyEQt34gIDQ8HrFPFArrE9KAFBzm4FO0fj-gSyFiH7zhI8R8n8mmhJ6_bt85uk80Bs0ZTrifrMHIIUMPPhSxh-wIKd6yqwHGiHe_e8MeXtYfz5viC0Z9JOuAvnUAqzdPWz0dnBayrlTdiJOs_mN_AGZzVug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Near infrared spectro-interferometer usingfemtosecond laser written GLS embeddedwaveguides and nano-scatterers</title><source>Free E-Journal (出版社公開部分のみ)</source><creator>Martin, Guillermo ; Bhuyan, Manoj ; Troles, Johann ; d'Amico, Ciro ; Stoian, Razvan ; Lecoarer, Etienne</creator><creatorcontrib>Martin, Guillermo ; Bhuyan, Manoj ; Troles, Johann ; d'Amico, Ciro ; Stoian, Razvan ; Lecoarer, Etienne</creatorcontrib><description>Guided optics spectrometers can be essentially classified into two main families:based on Fourier transform or dispersion. In the first case, an interferogram generated insidean optical waveguide and containing the spectral information is sampled using spatiallydistributed nanodetectors. These scatter quasi-non-perturbingly light into the detector that isin contact with the waveguide, helping to reconstruct the stationary wave. A dedicated FFTprocessing is needed in order to recover the spectrum with high resolution but limited spectralrange. Another way is to directly disperse the different wavelengths to different pixels, eitherintroducing differential optical path in the same propagation plane (multiple Mach-Zehnderinterferometers or Arrayed Waveguides Gratings), or using a periodic structure toperpendicularly extract the optical signal confined in a waveguide (photonic crystals orsurface gratings), and by means of a relay optics, generate the spectrum on the Fourier planeof the lens, where the detector is placed. Following this second approach, we present a laserfabricatedhigh-resolution compact dispersive spectro-interferometer (R&gt;2500, 30nm spectralrange at λ = 1560nm), using four parallel waveguides that can provide up to three nonredundantinterferometric combinations. The device is based on guided optics technologyembedded in bulk optical glass. Ultrafast laser photoinscription with 3D laser indexengineering in bulk chalcogenide Gallium Lanthanium Sulfide glass is utilized to fabricatelarge mode area waveguides in an evanescently-coupled hexagonal multicore arrayconfiguration, followed by subsequent realization of nanoscaled scattering centers via onedimensional nanovoids across the waveguide, written in a non-diffractive Besselconfiguration. A simple relay optics, with limited optical aberrations, reimages the diffractedsignal on the focal plane array, leading to a robust, easy to align instrument.</description><identifier>ISSN: 1094-4087</identifier><identifier>EISSN: 1094-4087</identifier><identifier>DOI: 10.1364/OE.25.008386</identifier><identifier>PMID: 28380951</identifier><language>eng</language><publisher>Optical Society of America - OSA Publishing</publisher><subject>Engineering Sciences ; Optics ; Photonic</subject><ispartof>Optics express, 2017-04, Vol.25 (7)</ispartof><rights>Attribution</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4437-8393 ; 0000-0003-2107-9515 ; 0000-0003-2107-9515 ; 0000-0002-4437-8393</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://ujm.hal.science/ujm-01534570$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Martin, Guillermo</creatorcontrib><creatorcontrib>Bhuyan, Manoj</creatorcontrib><creatorcontrib>Troles, Johann</creatorcontrib><creatorcontrib>d'Amico, Ciro</creatorcontrib><creatorcontrib>Stoian, Razvan</creatorcontrib><creatorcontrib>Lecoarer, Etienne</creatorcontrib><title>Near infrared spectro-interferometer usingfemtosecond laser written GLS embeddedwaveguides and nano-scatterers</title><title>Optics express</title><description>Guided optics spectrometers can be essentially classified into two main families:based on Fourier transform or dispersion. In the first case, an interferogram generated insidean optical waveguide and containing the spectral information is sampled using spatiallydistributed nanodetectors. These scatter quasi-non-perturbingly light into the detector that isin contact with the waveguide, helping to reconstruct the stationary wave. A dedicated FFTprocessing is needed in order to recover the spectrum with high resolution but limited spectralrange. Another way is to directly disperse the different wavelengths to different pixels, eitherintroducing differential optical path in the same propagation plane (multiple Mach-Zehnderinterferometers or Arrayed Waveguides Gratings), or using a periodic structure toperpendicularly extract the optical signal confined in a waveguide (photonic crystals orsurface gratings), and by means of a relay optics, generate the spectrum on the Fourier planeof the lens, where the detector is placed. Following this second approach, we present a laserfabricatedhigh-resolution compact dispersive spectro-interferometer (R&gt;2500, 30nm spectralrange at λ = 1560nm), using four parallel waveguides that can provide up to three nonredundantinterferometric combinations. The device is based on guided optics technologyembedded in bulk optical glass. Ultrafast laser photoinscription with 3D laser indexengineering in bulk chalcogenide Gallium Lanthanium Sulfide glass is utilized to fabricatelarge mode area waveguides in an evanescently-coupled hexagonal multicore arrayconfiguration, followed by subsequent realization of nanoscaled scattering centers via onedimensional nanovoids across the waveguide, written in a non-diffractive Besselconfiguration. A simple relay optics, with limited optical aberrations, reimages the diffractedsignal on the focal plane array, leading to a robust, easy to align instrument.</description><subject>Engineering Sciences</subject><subject>Optics</subject><subject>Photonic</subject><issn>1094-4087</issn><issn>1094-4087</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqVyrFOwzAUhWELgWgLbDyAV4YEu3GaZESo0KGiA-zWJb4prmK7unZa8fZ4YGBlOr-OPsbupShltVKPu3W5rEsh2qpdXbC5FJ0qlGibyz89Y4sYD0JI1XTNNZstMxZdLefMvyEQt34gIDQ8HrFPFArrE9KAFBzm4FO0fj-gSyFiH7zhI8R8n8mmhJ6_bt85uk80Bs0ZTrifrMHIIUMPPhSxh-wIKd6yqwHGiHe_e8MeXtYfz5viC0Z9JOuAvnUAqzdPWz0dnBayrlTdiJOs_mN_AGZzVug</recordid><startdate>20170403</startdate><enddate>20170403</enddate><creator>Martin, Guillermo</creator><creator>Bhuyan, Manoj</creator><creator>Troles, Johann</creator><creator>d'Amico, Ciro</creator><creator>Stoian, Razvan</creator><creator>Lecoarer, Etienne</creator><general>Optical Society of America - OSA Publishing</general><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-4437-8393</orcidid><orcidid>https://orcid.org/0000-0003-2107-9515</orcidid><orcidid>https://orcid.org/0000-0003-2107-9515</orcidid><orcidid>https://orcid.org/0000-0002-4437-8393</orcidid></search><sort><creationdate>20170403</creationdate><title>Near infrared spectro-interferometer usingfemtosecond laser written GLS embeddedwaveguides and nano-scatterers</title><author>Martin, Guillermo ; Bhuyan, Manoj ; Troles, Johann ; d'Amico, Ciro ; Stoian, Razvan ; Lecoarer, Etienne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_ujm_01534570v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Engineering Sciences</topic><topic>Optics</topic><topic>Photonic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martin, Guillermo</creatorcontrib><creatorcontrib>Bhuyan, Manoj</creatorcontrib><creatorcontrib>Troles, Johann</creatorcontrib><creatorcontrib>d'Amico, Ciro</creatorcontrib><creatorcontrib>Stoian, Razvan</creatorcontrib><creatorcontrib>Lecoarer, Etienne</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Optics express</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Guillermo</au><au>Bhuyan, Manoj</au><au>Troles, Johann</au><au>d'Amico, Ciro</au><au>Stoian, Razvan</au><au>Lecoarer, Etienne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Near infrared spectro-interferometer usingfemtosecond laser written GLS embeddedwaveguides and nano-scatterers</atitle><jtitle>Optics express</jtitle><date>2017-04-03</date><risdate>2017</risdate><volume>25</volume><issue>7</issue><issn>1094-4087</issn><eissn>1094-4087</eissn><abstract>Guided optics spectrometers can be essentially classified into two main families:based on Fourier transform or dispersion. In the first case, an interferogram generated insidean optical waveguide and containing the spectral information is sampled using spatiallydistributed nanodetectors. These scatter quasi-non-perturbingly light into the detector that isin contact with the waveguide, helping to reconstruct the stationary wave. A dedicated FFTprocessing is needed in order to recover the spectrum with high resolution but limited spectralrange. Another way is to directly disperse the different wavelengths to different pixels, eitherintroducing differential optical path in the same propagation plane (multiple Mach-Zehnderinterferometers or Arrayed Waveguides Gratings), or using a periodic structure toperpendicularly extract the optical signal confined in a waveguide (photonic crystals orsurface gratings), and by means of a relay optics, generate the spectrum on the Fourier planeof the lens, where the detector is placed. Following this second approach, we present a laserfabricatedhigh-resolution compact dispersive spectro-interferometer (R&gt;2500, 30nm spectralrange at λ = 1560nm), using four parallel waveguides that can provide up to three nonredundantinterferometric combinations. The device is based on guided optics technologyembedded in bulk optical glass. Ultrafast laser photoinscription with 3D laser indexengineering in bulk chalcogenide Gallium Lanthanium Sulfide glass is utilized to fabricatelarge mode area waveguides in an evanescently-coupled hexagonal multicore arrayconfiguration, followed by subsequent realization of nanoscaled scattering centers via onedimensional nanovoids across the waveguide, written in a non-diffractive Besselconfiguration. A simple relay optics, with limited optical aberrations, reimages the diffractedsignal on the focal plane array, leading to a robust, easy to align instrument.</abstract><pub>Optical Society of America - OSA Publishing</pub><pmid>28380951</pmid><doi>10.1364/OE.25.008386</doi><orcidid>https://orcid.org/0000-0002-4437-8393</orcidid><orcidid>https://orcid.org/0000-0003-2107-9515</orcidid><orcidid>https://orcid.org/0000-0003-2107-9515</orcidid><orcidid>https://orcid.org/0000-0002-4437-8393</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1094-4087
ispartof Optics express, 2017-04, Vol.25 (7)
issn 1094-4087
1094-4087
language eng
recordid cdi_hal_primary_oai_HAL_ujm_01534570v1
source Free E-Journal (出版社公開部分のみ)
subjects Engineering Sciences
Optics
Photonic
title Near infrared spectro-interferometer usingfemtosecond laser written GLS embeddedwaveguides and nano-scatterers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T06%3A59%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Near%20infrared%20spectro-interferometer%20usingfemtosecond%20laser%20written%20GLS%20embeddedwaveguides%20and%20nano-scatterers&rft.jtitle=Optics%20express&rft.au=Martin,%20Guillermo&rft.date=2017-04-03&rft.volume=25&rft.issue=7&rft.issn=1094-4087&rft.eissn=1094-4087&rft_id=info:doi/10.1364/OE.25.008386&rft_dat=%3Chal%3Eoai_HAL_ujm_01534570v1%3C/hal%3E%3Cgrp_id%3Ecdi_FETCH-hal_primary_oai_HAL_ujm_01534570v13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/28380951&rfr_iscdi=true