Loading…

Diversity of nirK Denitrifying Genes and Transcripts in an Agricultural Soil

Environmental conditions can change dramatically over a crop season and among locations in an agricultural field and can increase denitrification and emissions of the potent greenhouse gas nitrous oxide. In a previous study, changes in the overall size of the denitrifier community in a potato crop f...

Full description

Saved in:
Bibliographic Details
Published in:Applied and Environmental Microbiology 2009-12, Vol.75 (23), p.7365-7377
Main Authors: Wertz, Sophie, Dandie, Catherine E, Goyer, Claudia, Trevors, Jack T, Patten, Cheryl L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Environmental conditions can change dramatically over a crop season and among locations in an agricultural field and can increase denitrification and emissions of the potent greenhouse gas nitrous oxide. In a previous study, changes in the overall size of the denitrifier community in a potato crop field were relatively small and did not correlate with variations in environmental conditions or denitrification rates. However, denitrifying bacteria are taxonomically diverse, and different members of the community may respond differently to environmental changes. The objective of this research was to understand which portion of the nirK denitrifying community is active and contributes to denitrification under conditions in a potato crop field. Denaturing gradient gel electrophoresis (DGGE) of nirK genes in soil-extracted DNA showed changes in the composition of the nirK denitrifier community over the growing season and among spatial locations in the field. By contrast, the composition of the active nirK denitrifier community, as determined by DGGE analysis of nirK transcripts derived from soil-extracted mRNA, changed very little over time, although differences in the relative abundance of some specific transcripts were observed between locations. Our results indicate that the soil denitrifier populations bearing nirK genes are not all contributing to denitrification and that the denitrifying populations that are active are among the most abundant and ubiquitous nirK-bearing denitrifiers. Changes in the community composition of the total and active nirK denitrifiers were not strongly correlated with changes in environmental factors and denitrification activity.
ISSN:0099-2240
1098-5336
1098-6596
DOI:10.1128/AEM.01588-09