Loading…

Roles of Serine Accumulation and Catabolism in the Colonization of the Murine Urinary Tract by Escherichia coli CFT073

A D-serine deaminase (DsdA) mutant of uropathogenic Escherichia coli strain CFT073 has a hypercolonization phenotype in a murine model of urinary tract infection (UTI) due to increased virulence gene expression by an unknown mechanism (B. J. Haugen et al., Infect. Immun. 75:278-289, 2007). DsdC is a...

Full description

Saved in:
Bibliographic Details
Published in:Infection and Immunity 2007-11, Vol.75 (11), p.5298-5304
Main Authors: Anfora, Andrew T, Haugen, Brian J, Roesch, Paula, Redford, Peter, Welch, Rodney A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A D-serine deaminase (DsdA) mutant of uropathogenic Escherichia coli strain CFT073 has a hypercolonization phenotype in a murine model of urinary tract infection (UTI) due to increased virulence gene expression by an unknown mechanism (B. J. Haugen et al., Infect. Immun. 75:278-289, 2007). DsdC is a D-serine-dependent activator of dsdXA transcription. DsdC may regulate the virulence genes responsible for hypercolonization. The loss of DsdA leads to increased intracellular accumulation of D-serine. In this study we show that deletion of the genes encoding L-serine deaminases SdaA and SdaB resulted in a mutant that accumulates higher intracellular levels of L-serine than CFT073. CFT073 sdaA sdaB has a mild competitive colonization defect whereas a CFT073 dsdA sdaA sdaB triple mutant shows a greater loss in competitive colonization ability. Thus, the inability to generate serine-specific catabolic products does not result in hypercolonization and the ability to catabolize serine represents a positive physiological trait during murine UTI. CFT073 dsdC and CFT073 dsdC dsdA mutants continue to outcompete the wild type in the UTI model. These results confirm that loss of DsdA activity results in the hypercolonization phenotype and that DsdC does not play a direct role in the elevated-colonization phenotype. Interestingly, a CFT073 dsdA mutant with deletions of D-serine transporter genes dsdX and cycA shows wild-type colonization levels of the bladder but is attenuated for kidney colonization. Thus, D-serine acts as a signal for hypercolonization and virulence gene expression by CFT073 dsdA, whereas overall catabolism of serine represents a positive Escherichia coli fitness trait during UTI.
ISSN:0019-9567
1098-5522
DOI:10.1128/IAI.00652-07