Loading…

Mono- and Binuclear Zn2+-β-Lactamase

When expressed by pathogenic bacteria, Zn 2+ -β-lactamases induce resistance to most β-lactam antibiotics. A possible strategy to fight these bacteria would be a combined therapy with non-toxic inhibitors of Zn 2+ -β-lactamases together with standard antibiotics. For this purpose, it is important...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1999-05, Vol.274 (19), p.13242
Main Authors: Raquel Paul-Soto, Rogert Bauer, Jean-Marie Frère, Moreno Galleni, Wolfram Meyer-Klaucke, Hans Nolting, Gian Maria Rossolini, Dominique de Seny, Maria Hernandez-Valladares, Michael Zeppezauer, Hans-Werner Adolph
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 19
container_start_page 13242
container_title The Journal of biological chemistry
container_volume 274
creator Raquel Paul-Soto
Rogert Bauer
Jean-Marie Frère
Moreno Galleni
Wolfram Meyer-Klaucke
Hans Nolting
Gian Maria Rossolini
Dominique de Seny
Maria Hernandez-Valladares
Michael Zeppezauer
Hans-Werner Adolph
description When expressed by pathogenic bacteria, Zn 2+ -β-lactamases induce resistance to most β-lactam antibiotics. A possible strategy to fight these bacteria would be a combined therapy with non-toxic inhibitors of Zn 2+ -β-lactamases together with standard antibiotics. For this purpose, it is important to verify that the inhibitor is effective under all clinical conditions. We have investigated the correlation between the number of zinc ions bound to the Zn 2+ -β-lactamase from Bacillus cereus and hydrolysis of benzylpenicillin and nitrocefin for the wild type and a mutant where cysteine 168 is replaced by alanine. It is shown that both the mono-Zn 2+ (mononuclear) and di-Zn 2+ (binuclear) Zn 2+ -β-lactamases are catalytically active but with different kinetic properties. The mono-Zn 2+ -β-lactamase requires the conserved cysteine residue for hydrolysis of the β-lactam ring in contrast to the binuclear enzyme where the cysteine residue is not essential. Substrate affinity is not significantly affected by the mutation for the mononuclear enzyme but is decreased for the binuclear enzyme. These results were derived from kinetic studies on two wild types and the mutant enzyme with benzylpenicillin and nitrocefin as substrates. Thus, targeting drug design to modify this residue might represent an efficient strategy, the more so if it also interferes with the formation of the binuclear enzyme.
doi_str_mv 10.1074/jbc.274.19.13242
format article
fullrecord <record><control><sourceid>highwire</sourceid><recordid>TN_cdi_highwire_biochem_274_19_13242</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>274_19_13242</sourcerecordid><originalsourceid>FETCH-highwire_biochem_274_19_132423</originalsourceid><addsrcrecordid>eNpjYJAwNNAzNDA30c9KStYzMjfRM7TUMzQ2MjFiYuA0NLAw1jU2NYxgYeA0MDAy1LU0MrXgYOAqLs4yAAITS0N2Bg5DAyMjE6BCTgZ13_y8fF2FxLwUBafMvNLknNTEIoWoPCNt3cN9hzbp-iQmlyTmJhan8jCwpiXmFKfyQmluBhU31xBnD92MzPSM8syi1PikzPzkjNTceKB74g0t48HuMSZSGQDVdTf-</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mono- and Binuclear Zn2+-β-Lactamase</title><source>ScienceDirect Journals</source><creator>Raquel Paul-Soto ; Rogert Bauer ; Jean-Marie Frère ; Moreno Galleni ; Wolfram Meyer-Klaucke ; Hans Nolting ; Gian Maria Rossolini ; Dominique de Seny ; Maria Hernandez-Valladares ; Michael Zeppezauer ; Hans-Werner Adolph</creator><creatorcontrib>Raquel Paul-Soto ; Rogert Bauer ; Jean-Marie Frère ; Moreno Galleni ; Wolfram Meyer-Klaucke ; Hans Nolting ; Gian Maria Rossolini ; Dominique de Seny ; Maria Hernandez-Valladares ; Michael Zeppezauer ; Hans-Werner Adolph</creatorcontrib><description>When expressed by pathogenic bacteria, Zn 2+ -β-lactamases induce resistance to most β-lactam antibiotics. A possible strategy to fight these bacteria would be a combined therapy with non-toxic inhibitors of Zn 2+ -β-lactamases together with standard antibiotics. For this purpose, it is important to verify that the inhibitor is effective under all clinical conditions. We have investigated the correlation between the number of zinc ions bound to the Zn 2+ -β-lactamase from Bacillus cereus and hydrolysis of benzylpenicillin and nitrocefin for the wild type and a mutant where cysteine 168 is replaced by alanine. It is shown that both the mono-Zn 2+ (mononuclear) and di-Zn 2+ (binuclear) Zn 2+ -β-lactamases are catalytically active but with different kinetic properties. The mono-Zn 2+ -β-lactamase requires the conserved cysteine residue for hydrolysis of the β-lactam ring in contrast to the binuclear enzyme where the cysteine residue is not essential. Substrate affinity is not significantly affected by the mutation for the mononuclear enzyme but is decreased for the binuclear enzyme. These results were derived from kinetic studies on two wild types and the mutant enzyme with benzylpenicillin and nitrocefin as substrates. Thus, targeting drug design to modify this residue might represent an efficient strategy, the more so if it also interferes with the formation of the binuclear enzyme.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.274.19.13242</identifier><identifier>PMID: 10224083</identifier><language>eng</language><publisher>American Society for Biochemistry and Molecular Biology</publisher><ispartof>The Journal of biological chemistry, 1999-05, Vol.274 (19), p.13242</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Raquel Paul-Soto</creatorcontrib><creatorcontrib>Rogert Bauer</creatorcontrib><creatorcontrib>Jean-Marie Frère</creatorcontrib><creatorcontrib>Moreno Galleni</creatorcontrib><creatorcontrib>Wolfram Meyer-Klaucke</creatorcontrib><creatorcontrib>Hans Nolting</creatorcontrib><creatorcontrib>Gian Maria Rossolini</creatorcontrib><creatorcontrib>Dominique de Seny</creatorcontrib><creatorcontrib>Maria Hernandez-Valladares</creatorcontrib><creatorcontrib>Michael Zeppezauer</creatorcontrib><creatorcontrib>Hans-Werner Adolph</creatorcontrib><title>Mono- and Binuclear Zn2+-β-Lactamase</title><title>The Journal of biological chemistry</title><description>When expressed by pathogenic bacteria, Zn 2+ -β-lactamases induce resistance to most β-lactam antibiotics. A possible strategy to fight these bacteria would be a combined therapy with non-toxic inhibitors of Zn 2+ -β-lactamases together with standard antibiotics. For this purpose, it is important to verify that the inhibitor is effective under all clinical conditions. We have investigated the correlation between the number of zinc ions bound to the Zn 2+ -β-lactamase from Bacillus cereus and hydrolysis of benzylpenicillin and nitrocefin for the wild type and a mutant where cysteine 168 is replaced by alanine. It is shown that both the mono-Zn 2+ (mononuclear) and di-Zn 2+ (binuclear) Zn 2+ -β-lactamases are catalytically active but with different kinetic properties. The mono-Zn 2+ -β-lactamase requires the conserved cysteine residue for hydrolysis of the β-lactam ring in contrast to the binuclear enzyme where the cysteine residue is not essential. Substrate affinity is not significantly affected by the mutation for the mononuclear enzyme but is decreased for the binuclear enzyme. These results were derived from kinetic studies on two wild types and the mutant enzyme with benzylpenicillin and nitrocefin as substrates. Thus, targeting drug design to modify this residue might represent an efficient strategy, the more so if it also interferes with the formation of the binuclear enzyme.</description><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYJAwNNAzNDA30c9KStYzMjfRM7TUMzQ2MjFiYuA0NLAw1jU2NYxgYeA0MDAy1LU0MrXgYOAqLs4yAAITS0N2Bg5DAyMjE6BCTgZ13_y8fF2FxLwUBafMvNLknNTEIoWoPCNt3cN9hzbp-iQmlyTmJhan8jCwpiXmFKfyQmluBhU31xBnD92MzPSM8syi1PikzPzkjNTceKB74g0t48HuMSZSGQDVdTf-</recordid><startdate>19990507</startdate><enddate>19990507</enddate><creator>Raquel Paul-Soto</creator><creator>Rogert Bauer</creator><creator>Jean-Marie Frère</creator><creator>Moreno Galleni</creator><creator>Wolfram Meyer-Klaucke</creator><creator>Hans Nolting</creator><creator>Gian Maria Rossolini</creator><creator>Dominique de Seny</creator><creator>Maria Hernandez-Valladares</creator><creator>Michael Zeppezauer</creator><creator>Hans-Werner Adolph</creator><general>American Society for Biochemistry and Molecular Biology</general><scope/></search><sort><creationdate>19990507</creationdate><title>Mono- and Binuclear Zn2+-β-Lactamase</title><author>Raquel Paul-Soto ; Rogert Bauer ; Jean-Marie Frère ; Moreno Galleni ; Wolfram Meyer-Klaucke ; Hans Nolting ; Gian Maria Rossolini ; Dominique de Seny ; Maria Hernandez-Valladares ; Michael Zeppezauer ; Hans-Werner Adolph</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-highwire_biochem_274_19_132423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Raquel Paul-Soto</creatorcontrib><creatorcontrib>Rogert Bauer</creatorcontrib><creatorcontrib>Jean-Marie Frère</creatorcontrib><creatorcontrib>Moreno Galleni</creatorcontrib><creatorcontrib>Wolfram Meyer-Klaucke</creatorcontrib><creatorcontrib>Hans Nolting</creatorcontrib><creatorcontrib>Gian Maria Rossolini</creatorcontrib><creatorcontrib>Dominique de Seny</creatorcontrib><creatorcontrib>Maria Hernandez-Valladares</creatorcontrib><creatorcontrib>Michael Zeppezauer</creatorcontrib><creatorcontrib>Hans-Werner Adolph</creatorcontrib><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Raquel Paul-Soto</au><au>Rogert Bauer</au><au>Jean-Marie Frère</au><au>Moreno Galleni</au><au>Wolfram Meyer-Klaucke</au><au>Hans Nolting</au><au>Gian Maria Rossolini</au><au>Dominique de Seny</au><au>Maria Hernandez-Valladares</au><au>Michael Zeppezauer</au><au>Hans-Werner Adolph</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mono- and Binuclear Zn2+-β-Lactamase</atitle><jtitle>The Journal of biological chemistry</jtitle><date>1999-05-07</date><risdate>1999</risdate><volume>274</volume><issue>19</issue><spage>13242</spage><pages>13242-</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>When expressed by pathogenic bacteria, Zn 2+ -β-lactamases induce resistance to most β-lactam antibiotics. A possible strategy to fight these bacteria would be a combined therapy with non-toxic inhibitors of Zn 2+ -β-lactamases together with standard antibiotics. For this purpose, it is important to verify that the inhibitor is effective under all clinical conditions. We have investigated the correlation between the number of zinc ions bound to the Zn 2+ -β-lactamase from Bacillus cereus and hydrolysis of benzylpenicillin and nitrocefin for the wild type and a mutant where cysteine 168 is replaced by alanine. It is shown that both the mono-Zn 2+ (mononuclear) and di-Zn 2+ (binuclear) Zn 2+ -β-lactamases are catalytically active but with different kinetic properties. The mono-Zn 2+ -β-lactamase requires the conserved cysteine residue for hydrolysis of the β-lactam ring in contrast to the binuclear enzyme where the cysteine residue is not essential. Substrate affinity is not significantly affected by the mutation for the mononuclear enzyme but is decreased for the binuclear enzyme. These results were derived from kinetic studies on two wild types and the mutant enzyme with benzylpenicillin and nitrocefin as substrates. Thus, targeting drug design to modify this residue might represent an efficient strategy, the more so if it also interferes with the formation of the binuclear enzyme.</abstract><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>10224083</pmid><doi>10.1074/jbc.274.19.13242</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 1999-05, Vol.274 (19), p.13242
issn 0021-9258
1083-351X
language eng
recordid cdi_highwire_biochem_274_19_13242
source ScienceDirect Journals
title Mono- and Binuclear Zn2+-β-Lactamase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T20%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-highwire&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mono-%20and%20Binuclear%20Zn2+-%C3%8E%C2%B2-Lactamase&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Raquel%20Paul-Soto&rft.date=1999-05-07&rft.volume=274&rft.issue=19&rft.spage=13242&rft.pages=13242-&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.274.19.13242&rft_dat=%3Chighwire%3E274_19_13242%3C/highwire%3E%3Cgrp_id%3Ecdi_FETCH-highwire_biochem_274_19_132423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/10224083&rfr_iscdi=true