Loading…

A Remodeling System of the 3′-Sulfo-Lewis a and 3′-Sulfo-Lewis x Epitopes

It has been reported that the chemically synthesized 3′-sulfo-Le a and 3′-sulfo-Le x epitopes have a high potential as a ligand for selectins. To elucidate the physiological functions of 3′-sulfated Lewis epitopes, a remodeling system was developed using a combination of a βGal-3- O -sulfotra...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2001-10, Vol.276 (42), p.38588
Main Authors: Naoki Ikeda, Hironobu Eguchi, Shoko Nishihara, Hisashi Narimatsu, Reiji Kannagi, Tatsuro Irimura, Mitsunori Ohta, Hikaru Matsuda, Naoyuki Taniguchi, Koichi Honke
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue 42
container_start_page 38588
container_title The Journal of biological chemistry
container_volume 276
creator Naoki Ikeda
Hironobu Eguchi
Shoko Nishihara
Hisashi Narimatsu
Reiji Kannagi
Tatsuro Irimura
Mitsunori Ohta
Hikaru Matsuda
Naoyuki Taniguchi
Koichi Honke
description It has been reported that the chemically synthesized 3′-sulfo-Le a and 3′-sulfo-Le x epitopes have a high potential as a ligand for selectins. To elucidate the physiological functions of 3′-sulfated Lewis epitopes, a remodeling system was developed using a combination of a βGal-3- O -sulfotransferase GP3ST, hitherto known α1,3/1,4-fucosyltransferases (FucT-III, IV, V, VI, VII, and IX) and arylsulfatase A. The pyridylaminated (PA) lacto- N -tetraose (Galβ1–3GlcNAcβ1–3Galβ1–4Glc) was first converted to 3′-sulfolacto- N -fucopentaose II (sulfo-3Galβ1–3(Fucα1–4)GlcNAcβ1–3Galβ1–4Glc)-PA by sequential reactions with GP3ST and FucT-III. The 3′-sulfolacto- N -fucopentaose III (sulfo-3Galβ1–4(Fucα1–3)GlcNAcβ1–3Galβ1–4Glc)-PA was then synthesized from lacto- N -neotetraose (Galβ1–4GlcNAcβ1–3Galβ1–4Glc)-PA by GP3ST and FucT-III, -IV, -V, -VI, -VII, or -IX in a similar manner. The substrate specificity for the 3′-sulfated acceptor of the α1,3-fucosyltransferases was considerably different from that for the non-substituted and 3′-sialylated varieties. When the GP3ST gene was introduced into A549 and Chinese hamster ovary cells expressing FucT-III, they began to express 3′-sulfo-Le a and 3′-sulfo-Le x epitopes, respectively, suggesting that GP3ST is responsible for their biosynthesis in vivo . The expression of the 3′-sialyl-Le x epitope on Chinese hamster ovary cells was attenuated by the introduction of GP3ST gene, indicating that GP3ST and α2,3-sialyltransferase compete for the common Galβ1–4GlcNAc-R oligosaccharides. Last, arylsulfatase A, which is a lysosomal hydrolase that catalyzes the desulfation of 3- O -sulfogalactosyl residues in glycolipids, was found to hydrolyze the sulfate ester bond on the 3′-sulfo-Le x (type 2 chain) but not that on the 3′-sulfo-Le a (type 1 chain). The present remodeling system might be of potential use as a tool for the study of the physiological roles of 3′-sulfated Lewis epitopes, including interaction with selectins.
doi_str_mv 10.1074/jbc.M107390200
format article
fullrecord <record><control><sourceid>highwire</sourceid><recordid>TN_cdi_highwire_biochem_276_42_38588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>276_42_38588</sourcerecordid><originalsourceid>FETCH-highwire_biochem_276_42_385883</originalsourceid><addsrcrecordid>eNpjYBAzNNAzNDA30c9KStbzBbKMLQ2MDAyYGDgNDSyMdY1NDSNYGDgNDIwMdS2NTC04GLiKi7MMgMDE0pCdgcPQ0NTABKiHkyHYUSEoNTc_JTUnMy9dIbiyuCQ1VyE_TaEkI1XB-PCiQw2HNukGl-ak5ev6pJZnFiskKiTmpWCVqVBwLcgsyS9ILeZhYE1LzClO5YXS3Awqbq4hzh66GZnpGeWZRanxSZn5yRmpufFG5mbxJkbxxhamFhbGRCoDAO4kSi4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A Remodeling System of the 3′-Sulfo-Lewis a and 3′-Sulfo-Lewis x Epitopes</title><source>Elsevier ScienceDirect Journals</source><creator>Naoki Ikeda ; Hironobu Eguchi ; Shoko Nishihara ; Hisashi Narimatsu ; Reiji Kannagi ; Tatsuro Irimura ; Mitsunori Ohta ; Hikaru Matsuda ; Naoyuki Taniguchi ; Koichi Honke</creator><creatorcontrib>Naoki Ikeda ; Hironobu Eguchi ; Shoko Nishihara ; Hisashi Narimatsu ; Reiji Kannagi ; Tatsuro Irimura ; Mitsunori Ohta ; Hikaru Matsuda ; Naoyuki Taniguchi ; Koichi Honke</creatorcontrib><description>It has been reported that the chemically synthesized 3′-sulfo-Le a and 3′-sulfo-Le x epitopes have a high potential as a ligand for selectins. To elucidate the physiological functions of 3′-sulfated Lewis epitopes, a remodeling system was developed using a combination of a βGal-3- O -sulfotransferase GP3ST, hitherto known α1,3/1,4-fucosyltransferases (FucT-III, IV, V, VI, VII, and IX) and arylsulfatase A. The pyridylaminated (PA) lacto- N -tetraose (Galβ1–3GlcNAcβ1–3Galβ1–4Glc) was first converted to 3′-sulfolacto- N -fucopentaose II (sulfo-3Galβ1–3(Fucα1–4)GlcNAcβ1–3Galβ1–4Glc)-PA by sequential reactions with GP3ST and FucT-III. The 3′-sulfolacto- N -fucopentaose III (sulfo-3Galβ1–4(Fucα1–3)GlcNAcβ1–3Galβ1–4Glc)-PA was then synthesized from lacto- N -neotetraose (Galβ1–4GlcNAcβ1–3Galβ1–4Glc)-PA by GP3ST and FucT-III, -IV, -V, -VI, -VII, or -IX in a similar manner. The substrate specificity for the 3′-sulfated acceptor of the α1,3-fucosyltransferases was considerably different from that for the non-substituted and 3′-sialylated varieties. When the GP3ST gene was introduced into A549 and Chinese hamster ovary cells expressing FucT-III, they began to express 3′-sulfo-Le a and 3′-sulfo-Le x epitopes, respectively, suggesting that GP3ST is responsible for their biosynthesis in vivo . The expression of the 3′-sialyl-Le x epitope on Chinese hamster ovary cells was attenuated by the introduction of GP3ST gene, indicating that GP3ST and α2,3-sialyltransferase compete for the common Galβ1–4GlcNAc-R oligosaccharides. Last, arylsulfatase A, which is a lysosomal hydrolase that catalyzes the desulfation of 3- O -sulfogalactosyl residues in glycolipids, was found to hydrolyze the sulfate ester bond on the 3′-sulfo-Le x (type 2 chain) but not that on the 3′-sulfo-Le a (type 1 chain). The present remodeling system might be of potential use as a tool for the study of the physiological roles of 3′-sulfated Lewis epitopes, including interaction with selectins.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M107390200</identifier><identifier>PMID: 11504739</identifier><language>eng</language><publisher>American Society for Biochemistry and Molecular Biology</publisher><ispartof>The Journal of biological chemistry, 2001-10, Vol.276 (42), p.38588</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Naoki Ikeda</creatorcontrib><creatorcontrib>Hironobu Eguchi</creatorcontrib><creatorcontrib>Shoko Nishihara</creatorcontrib><creatorcontrib>Hisashi Narimatsu</creatorcontrib><creatorcontrib>Reiji Kannagi</creatorcontrib><creatorcontrib>Tatsuro Irimura</creatorcontrib><creatorcontrib>Mitsunori Ohta</creatorcontrib><creatorcontrib>Hikaru Matsuda</creatorcontrib><creatorcontrib>Naoyuki Taniguchi</creatorcontrib><creatorcontrib>Koichi Honke</creatorcontrib><title>A Remodeling System of the 3′-Sulfo-Lewis a and 3′-Sulfo-Lewis x Epitopes</title><title>The Journal of biological chemistry</title><description>It has been reported that the chemically synthesized 3′-sulfo-Le a and 3′-sulfo-Le x epitopes have a high potential as a ligand for selectins. To elucidate the physiological functions of 3′-sulfated Lewis epitopes, a remodeling system was developed using a combination of a βGal-3- O -sulfotransferase GP3ST, hitherto known α1,3/1,4-fucosyltransferases (FucT-III, IV, V, VI, VII, and IX) and arylsulfatase A. The pyridylaminated (PA) lacto- N -tetraose (Galβ1–3GlcNAcβ1–3Galβ1–4Glc) was first converted to 3′-sulfolacto- N -fucopentaose II (sulfo-3Galβ1–3(Fucα1–4)GlcNAcβ1–3Galβ1–4Glc)-PA by sequential reactions with GP3ST and FucT-III. The 3′-sulfolacto- N -fucopentaose III (sulfo-3Galβ1–4(Fucα1–3)GlcNAcβ1–3Galβ1–4Glc)-PA was then synthesized from lacto- N -neotetraose (Galβ1–4GlcNAcβ1–3Galβ1–4Glc)-PA by GP3ST and FucT-III, -IV, -V, -VI, -VII, or -IX in a similar manner. The substrate specificity for the 3′-sulfated acceptor of the α1,3-fucosyltransferases was considerably different from that for the non-substituted and 3′-sialylated varieties. When the GP3ST gene was introduced into A549 and Chinese hamster ovary cells expressing FucT-III, they began to express 3′-sulfo-Le a and 3′-sulfo-Le x epitopes, respectively, suggesting that GP3ST is responsible for their biosynthesis in vivo . The expression of the 3′-sialyl-Le x epitope on Chinese hamster ovary cells was attenuated by the introduction of GP3ST gene, indicating that GP3ST and α2,3-sialyltransferase compete for the common Galβ1–4GlcNAc-R oligosaccharides. Last, arylsulfatase A, which is a lysosomal hydrolase that catalyzes the desulfation of 3- O -sulfogalactosyl residues in glycolipids, was found to hydrolyze the sulfate ester bond on the 3′-sulfo-Le x (type 2 chain) but not that on the 3′-sulfo-Le a (type 1 chain). The present remodeling system might be of potential use as a tool for the study of the physiological roles of 3′-sulfated Lewis epitopes, including interaction with selectins.</description><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpjYBAzNNAzNDA30c9KStbzBbKMLQ2MDAyYGDgNDSyMdY1NDSNYGDgNDIwMdS2NTC04GLiKi7MMgMDE0pCdgcPQ0NTABKiHkyHYUSEoNTc_JTUnMy9dIbiyuCQ1VyE_TaEkI1XB-PCiQw2HNukGl-ak5ev6pJZnFiskKiTmpWCVqVBwLcgsyS9ILeZhYE1LzClO5YXS3Awqbq4hzh66GZnpGeWZRanxSZn5yRmpufFG5mbxJkbxxhamFhbGRCoDAO4kSi4</recordid><startdate>20011019</startdate><enddate>20011019</enddate><creator>Naoki Ikeda</creator><creator>Hironobu Eguchi</creator><creator>Shoko Nishihara</creator><creator>Hisashi Narimatsu</creator><creator>Reiji Kannagi</creator><creator>Tatsuro Irimura</creator><creator>Mitsunori Ohta</creator><creator>Hikaru Matsuda</creator><creator>Naoyuki Taniguchi</creator><creator>Koichi Honke</creator><general>American Society for Biochemistry and Molecular Biology</general><scope/></search><sort><creationdate>20011019</creationdate><title>A Remodeling System of the 3′-Sulfo-Lewis a and 3′-Sulfo-Lewis x Epitopes</title><author>Naoki Ikeda ; Hironobu Eguchi ; Shoko Nishihara ; Hisashi Narimatsu ; Reiji Kannagi ; Tatsuro Irimura ; Mitsunori Ohta ; Hikaru Matsuda ; Naoyuki Taniguchi ; Koichi Honke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-highwire_biochem_276_42_385883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Naoki Ikeda</creatorcontrib><creatorcontrib>Hironobu Eguchi</creatorcontrib><creatorcontrib>Shoko Nishihara</creatorcontrib><creatorcontrib>Hisashi Narimatsu</creatorcontrib><creatorcontrib>Reiji Kannagi</creatorcontrib><creatorcontrib>Tatsuro Irimura</creatorcontrib><creatorcontrib>Mitsunori Ohta</creatorcontrib><creatorcontrib>Hikaru Matsuda</creatorcontrib><creatorcontrib>Naoyuki Taniguchi</creatorcontrib><creatorcontrib>Koichi Honke</creatorcontrib><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Naoki Ikeda</au><au>Hironobu Eguchi</au><au>Shoko Nishihara</au><au>Hisashi Narimatsu</au><au>Reiji Kannagi</au><au>Tatsuro Irimura</au><au>Mitsunori Ohta</au><au>Hikaru Matsuda</au><au>Naoyuki Taniguchi</au><au>Koichi Honke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Remodeling System of the 3′-Sulfo-Lewis a and 3′-Sulfo-Lewis x Epitopes</atitle><jtitle>The Journal of biological chemistry</jtitle><date>2001-10-19</date><risdate>2001</risdate><volume>276</volume><issue>42</issue><spage>38588</spage><pages>38588-</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>It has been reported that the chemically synthesized 3′-sulfo-Le a and 3′-sulfo-Le x epitopes have a high potential as a ligand for selectins. To elucidate the physiological functions of 3′-sulfated Lewis epitopes, a remodeling system was developed using a combination of a βGal-3- O -sulfotransferase GP3ST, hitherto known α1,3/1,4-fucosyltransferases (FucT-III, IV, V, VI, VII, and IX) and arylsulfatase A. The pyridylaminated (PA) lacto- N -tetraose (Galβ1–3GlcNAcβ1–3Galβ1–4Glc) was first converted to 3′-sulfolacto- N -fucopentaose II (sulfo-3Galβ1–3(Fucα1–4)GlcNAcβ1–3Galβ1–4Glc)-PA by sequential reactions with GP3ST and FucT-III. The 3′-sulfolacto- N -fucopentaose III (sulfo-3Galβ1–4(Fucα1–3)GlcNAcβ1–3Galβ1–4Glc)-PA was then synthesized from lacto- N -neotetraose (Galβ1–4GlcNAcβ1–3Galβ1–4Glc)-PA by GP3ST and FucT-III, -IV, -V, -VI, -VII, or -IX in a similar manner. The substrate specificity for the 3′-sulfated acceptor of the α1,3-fucosyltransferases was considerably different from that for the non-substituted and 3′-sialylated varieties. When the GP3ST gene was introduced into A549 and Chinese hamster ovary cells expressing FucT-III, they began to express 3′-sulfo-Le a and 3′-sulfo-Le x epitopes, respectively, suggesting that GP3ST is responsible for their biosynthesis in vivo . The expression of the 3′-sialyl-Le x epitope on Chinese hamster ovary cells was attenuated by the introduction of GP3ST gene, indicating that GP3ST and α2,3-sialyltransferase compete for the common Galβ1–4GlcNAc-R oligosaccharides. Last, arylsulfatase A, which is a lysosomal hydrolase that catalyzes the desulfation of 3- O -sulfogalactosyl residues in glycolipids, was found to hydrolyze the sulfate ester bond on the 3′-sulfo-Le x (type 2 chain) but not that on the 3′-sulfo-Le a (type 1 chain). The present remodeling system might be of potential use as a tool for the study of the physiological roles of 3′-sulfated Lewis epitopes, including interaction with selectins.</abstract><pub>American Society for Biochemistry and Molecular Biology</pub><pmid>11504739</pmid><doi>10.1074/jbc.M107390200</doi></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2001-10, Vol.276 (42), p.38588
issn 0021-9258
1083-351X
language eng
recordid cdi_highwire_biochem_276_42_38588
source Elsevier ScienceDirect Journals
title A Remodeling System of the 3′-Sulfo-Lewis a and 3′-Sulfo-Lewis x Epitopes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A43%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-highwire&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Remodeling%20System%20of%20the%203%C3%A2%C2%80%C2%B2-Sulfo-Lewis%20a%20and%203%C3%A2%C2%80%C2%B2-Sulfo-Lewis%20x%20Epitopes&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Naoki%20Ikeda&rft.date=2001-10-19&rft.volume=276&rft.issue=42&rft.spage=38588&rft.pages=38588-&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M107390200&rft_dat=%3Chighwire%3E276_42_38588%3C/highwire%3E%3Cgrp_id%3Ecdi_FETCH-highwire_biochem_276_42_385883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/11504739&rfr_iscdi=true