Loading…
Phosphorylation Regulates Tau Interactions with Src Homology 3 Domains of Phosphatidylinositol 3-Kinase, Phospholipase Cγ1, Grb2, and Src Family Kinases
The microtubule-associated protein tau can associate with various other proteins in addition to tubulin, including the SH3 domains of Src family tyrosine kinases. Tau is well known to aggregate to form hyperphosphorylated filamentous deposits in several neurodegenerative diseases (tauopathies) inclu...
Saved in:
Published in: | The Journal of biological chemistry 2008-06, Vol.283 (26), p.18177 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The microtubule-associated protein tau can associate with various other proteins in addition to tubulin, including the SH3
domains of Src family tyrosine kinases. Tau is well known to aggregate to form hyperphosphorylated filamentous deposits in
several neurodegenerative diseases (tauopathies) including Alzheimer disease. We now report that tau can bind to SH3 domains
derived from the p85α subunit of phosphatidylinositol 3-kinase, phospholipase Cγ1, and the N-terminal (but not the C-terminal)
SH3 of Grb2 as well as to the kinases Fyn, cSrc, and Fgr. However, the short inserts found in neuron-specific isoforms of
Src prevented the binding of tau. The experimentally determined binding of tau peptides is well accounted for when modeled
into the peptide binding cleft in the SH3 domain of Fyn. After phosphorylation in vitro or in transfected cells, tau showed reduced binding to SH3 domains; no binding was detected with hyperphosphorylated tau
isolated from Alzheimer brain, but SH3 binding was restored by phosphatase treatment. Tau mutants with serines and threonines
replaced by glutamate, to mimic phosphorylation, showed reduced SH3 binding. These results strongly suggest that tau has a
potential role in cell signaling in addition to its accepted role in cytoskeletal assembly, with regulation by phosphorylation
that may be disrupted in the tauopathies including Alzheimer disease. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M709715200 |