Loading…

Pro-interleukin (IL)-1β Shares a Core Region of Stability as Compared with Mature IL-1β While Maintaining a Distinctly Different Configurational Landscape

Interleukin-1β (IL-1β) is a master cytokine involved in initiating the innate immune response in vertebrates (Dinarello, C. A. (1994) FASEB J . 8, 1314–1325). It is first synthesized as an inactive 269-residue precursor (pro-interleukin-1β or pro-IL-1β). Pro-IL-1β requires processing by caspa...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2009-09, Vol.284 (38), p.26137
Main Authors: Kendra L. Hailey, Sheng Li, Mette D. Andersen, Melinda Roy, Virgil L. Woods, Jr, Patricia A. Jennings
Format: Article
Language:English
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Interleukin-1β (IL-1β) is a master cytokine involved in initiating the innate immune response in vertebrates (Dinarello, C. A. (1994) FASEB J . 8, 1314–1325). It is first synthesized as an inactive 269-residue precursor (pro-interleukin-1β or pro-IL-1β). Pro-IL-1β requires processing by caspase-1 to generate the active, mature 153-residue cytokine. In this study, we combined hydrogen/deuterium exchange mass spectrometry, circular dichroism spectroscopy, and enzymatic digestion comparative studies to investigate the configurational landscape of pro-IL-1β and the role the N terminus plays in modulating the landscape. We find that the N terminus keeps pro-IL-1β in a protease-labile state while maintaining a core region of stability in the C-terminal region, the eventual mature protein. In mature IL-1β, this highly protected region maps back to the area protected earliest in the NMR studies characterizing an on-route kinetic refolding intermediate. This protected region also encompasses two important functional loops that participate in the IL-1β/receptor binding interface required for biological activity. We propose that the purpose of the N-terminal precursor region in pro-IL-1β is to suppress the function of the eventual mature region while keeping a structurally and also functionally important core region primed for the final folding into the native, active state of the mature protein. The presence of the self-inhibiting precursor region provides yet another layer of regulation in the life cycle of this important cytokine.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M109.027375