Loading…
Hepatic Bax Inhibitor-1 Inhibits IRE1α and Protects from Obesity-associated Insulin Resistance and Glucose Intolerance
The unfolded protein response (UPR) or endoplasmic reticulum (ER) stress response is a physiological process enabling cells to cope with altered protein synthesis demands. However, under conditions of obesity, prolonged activation of the UPR has been shown to have deteriorating effects on different...
Saved in:
Published in: | The Journal of biological chemistry 2010-02, Vol.285 (9), p.6198 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The unfolded protein response (UPR) or endoplasmic reticulum (ER) stress response is a physiological process enabling cells
to cope with altered protein synthesis demands. However, under conditions of obesity, prolonged activation of the UPR has
been shown to have deteriorating effects on different metabolic pathways. Here we identify Bax inhibitor-1 (BI-1), an evolutionary
conserved ER-membrane protein, as a novel modulator of the obesity-associated alteration of the UPR. BI-1 partially inhibits
the UPR by interacting with IRE1α and inhibiting IRE1α endonuclease activity as seen on the splicing of the transcription
factor Xbp-1. Because we observed a down-regulation of BI-1 expression in liver and muscle of genetically obese ob/ob and db/db mice as well as in mice with diet-induced obesity in vivo , we investigated the effect of restoring BI-1 expression on metabolic processes in these mice. Importantly, BI-1 overexpression
by adenoviral gene transfer dramatically improved glucose metabolism in both standard diet-fed mice as well as in mice with
diet-induced obesity and, critically, reversed hyperglycemia in db/db mice. This improvement in whole body glucose metabolism and insulin sensitivity was due to dramatically reduced gluconeogenesis
as shown by reduction of glucose-6-phosphatase and phosphoenolpyruvate carboxykinase expression. Taken together, these results
identify BI-1 as a critical regulator of ER stress responses in the development of obesity-associated insulin resistance and
provide proof of concept evidence that gene transfer-mediated elevations in hepatic BI-1 may represent a promising approach
for the treatment of type 2 diabetes. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M109.056648 |