Loading…

Early feeding of carnivorous rainbow trout (Oncorhynchus mykiss) with a hyperglucidic diet during a short period: effect on dietary glucose utilization in juveniles

1 INRA Nutrition Metabolism Aquaculture Team, Nutrition Aquaculture and Genomics Research Unit, UMR A067 NuAGe, INRA-IFREMER-Bordeaux 1, INRA Pôle d'Hydrobiologie, St-Pée-sur-Nivelle, France; 2 IFREMER, Marine Fish Nutrition Team, Technopole Brest-Iroise, Plouzané, France Submitted 28 June 2006...

Full description

Saved in:
Bibliographic Details
Published in:American journal of physiology. Regulatory, integrative and comparative physiology integrative and comparative physiology, 2007-06, Vol.292 (6), p.R2275-R2283
Main Authors: Geurden, I, Aramendi, M, Zambonino-Infante, J, Panserat, S
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:1 INRA Nutrition Metabolism Aquaculture Team, Nutrition Aquaculture and Genomics Research Unit, UMR A067 NuAGe, INRA-IFREMER-Bordeaux 1, INRA Pôle d'Hydrobiologie, St-Pée-sur-Nivelle, France; 2 IFREMER, Marine Fish Nutrition Team, Technopole Brest-Iroise, Plouzané, France Submitted 28 June 2006 ; accepted in final form 10 February 2007 Based on the concept of nutritional programming in higher vertebrates, we tested whether an acute hyperglucidic stimulus during early life could induce a long-lasting effect on carbohydrate utilization in carnivorous rainbow trout. The trout were fed a hyperglucidic diet (60% dextrin) at two early stages of development: either at first feeding (3 days, stimulus 1 ) or after yolk absorption (5 days, stimulus 2 ). Before and after the hyperglucidic stimulus, they received a commercial diet until juvenile stage (>10 g). Fish that did not experience the hyperglucidic stimuli served as controls. The short- and long-term effects of the stimuli were evaluated by measuring the expression of five key genes involved in carbohydrate utilization: -amylase, maltase (digestion), sodium-dependent glucose cotransporter (SGLT1; intestinal glucose transport), and glucokinase and glucose-6-phosphatase, involved in the utilization and production of glucose, respectively. The hyperglucidic diet rapidly increased expressions of maltase, -amylase, and glucokinase in stimulus 1 fish and only of maltase in stimulus 2 fish, probably because of a lower plasticity at this later stage of development. In the final challenge test with juveniles fed a 25% dextrin diet, both digestive enzymes were upregulated in fish that had experienced the hyperglucidic stimulus at first feeding, confirming the possibility of modification of some long-term physiological functions in rainbow trout. In contrast, no persistent molecular adaptations were found for the genes involved in glucose transport or metabolism. In addition, growth and postprandial glycemia were unaffected by the stimuli. In summary, our data show that a short hyperglucidic stimulus during early trout life may permanently influence carbohydrate digestion. fish nutrition; nutritional programming; carbohydrate digestion; intestinal glucose transport; glucose metabolism Address for reprint requests and other correspondence: S. Panserat, Nutrition Aquaculture and Genomics Research Unit, NuAGe INRA-IFREMER-Bordeaux1, 64310 St-Pée-sur-Nivelle, France (e-mail: panserat{at}st-pee.inra.fr )
ISSN:0363-6119
1522-1490
DOI:10.1152/ajpregu.00444.2006