Loading…

High Threshold, Proximal Initiation, and Slow Conduction Velocity of Action Potentials in Dentate Granule Neuron Mossy Fibers

Departments of 1 Psychiatry and 2 Anatomy and Neurobiology and 3 Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri Submitted 22 February 2008; accepted in final form 12 May 2008 Dentate granule neurons give rise to some of the smallest unmyelinated fibers in the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of neurophysiology 2008-07, Vol.100 (1), p.281-291
Main Authors: Kress, Geraldine J, Dowling, Margaret J, Meeks, Julian P, Mennerick, Steven
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c527t-dfbc8731f9cb32cb14def4e49e70ac0a191b17ddab9721e033fc8067ae0a3b3f3
cites cdi_FETCH-LOGICAL-c527t-dfbc8731f9cb32cb14def4e49e70ac0a191b17ddab9721e033fc8067ae0a3b3f3
container_end_page 291
container_issue 1
container_start_page 281
container_title Journal of neurophysiology
container_volume 100
creator Kress, Geraldine J
Dowling, Margaret J
Meeks, Julian P
Mennerick, Steven
description Departments of 1 Psychiatry and 2 Anatomy and Neurobiology and 3 Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri Submitted 22 February 2008; accepted in final form 12 May 2008 Dentate granule neurons give rise to some of the smallest unmyelinated fibers in the mammalian CNS, the hippocampal mossy fibers. These neurons are also key regulators of physiological and pathophysiological information flow through the hippocampus. We took a comparative approach to studying mossy fiber action potential initiation and propagation in hippocampal slices from juvenile rats. Dentate granule neurons exhibited axonal action potential initiation significantly more proximal than CA3 pyramidal neurons. This conclusion was suggested by phase plot analysis of somatic action potentials and by local tetrodotoxin application to the axon and somatodendritic compartments. This conclusion was also verified by immunostaining for voltage-gated sodium channel alpha subunits and by direct dual soma/axonal recordings. Dentate neurons exhibited a significantly higher action potential threshold and slower axonal conduction velocity than CA3 neurons. We conclude that while the electrotonically proximal axon location of action potential initiation allows granule neurons to sensitively detect and integrate synaptic inputs, the neurons are sluggish to initiate and propagate an action potential. Address for reprint requests and other correspondence: S. Mennerick, Dept. of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8134, St. Louis, MO 63110 (E-mail: menneris{at}psychiatry.wustl.edu )
doi_str_mv 10.1152/jn.90295.2008
format article
fullrecord <record><control><sourceid>pubmed_highw</sourceid><recordid>TN_cdi_highwire_physiology_jn_100_1_281</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18480368</sourcerecordid><originalsourceid>FETCH-LOGICAL-c527t-dfbc8731f9cb32cb14def4e49e70ac0a191b17ddab9721e033fc8067ae0a3b3f3</originalsourceid><addsrcrecordid>eNp1kU1v1DAQhi1ERZfCkSvyjUuzjO2kTi5I1ZZtK7VQqVuuluOPjVeuvXIS2hz473i7VYEDJ49mnved8QxCHwjMCano502YN0Cbak4B6ldolnO0IFVTv0YzgBwz4PwQve37DQDwCugbdEjqsgZ2Us_Qrwu37vCqS6bvotfH-CbFR3cvPb4MbnBycDEcYxk0vvXxAS9i0KPaJfEP46Nyw4Sjxaf71E0cTMgi32MX8FmO5WDweZJh9AZ_M2PK0HXs-wkvXWtS_w4d2Eyb98_vEbpbfl0tLoqr7-eXi9OrQlWUD4W2rao5I7ZRLaOqJaU2tjRlYzhIBZI0pCVca9k2nBIDjFlVwwmXBiRrmWVH6Mvedzu290arPFmSXmxT_mmaRJRO_FsJrhPr-FPQsmFlTbJBsTdQKY-fjH3REhC7O4hNEE93ELs7ZP7j3w3_0M-Lz8CnPdDl_T-4ZMS2m3oXfVxPOy8C2VfQp9bs_-Ry9H5lHocseVGIrbbsN6byp8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>High Threshold, Proximal Initiation, and Slow Conduction Velocity of Action Potentials in Dentate Granule Neuron Mossy Fibers</title><source>American Physiological Society Journals</source><source>American Physiological Society:Jisc Collections:American Physiological Society Journals ‘Read Publish &amp; Join’ Agreement:2023-2024 (Reading list)</source><creator>Kress, Geraldine J ; Dowling, Margaret J ; Meeks, Julian P ; Mennerick, Steven</creator><creatorcontrib>Kress, Geraldine J ; Dowling, Margaret J ; Meeks, Julian P ; Mennerick, Steven</creatorcontrib><description>Departments of 1 Psychiatry and 2 Anatomy and Neurobiology and 3 Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri Submitted 22 February 2008; accepted in final form 12 May 2008 Dentate granule neurons give rise to some of the smallest unmyelinated fibers in the mammalian CNS, the hippocampal mossy fibers. These neurons are also key regulators of physiological and pathophysiological information flow through the hippocampus. We took a comparative approach to studying mossy fiber action potential initiation and propagation in hippocampal slices from juvenile rats. Dentate granule neurons exhibited axonal action potential initiation significantly more proximal than CA3 pyramidal neurons. This conclusion was suggested by phase plot analysis of somatic action potentials and by local tetrodotoxin application to the axon and somatodendritic compartments. This conclusion was also verified by immunostaining for voltage-gated sodium channel alpha subunits and by direct dual soma/axonal recordings. Dentate neurons exhibited a significantly higher action potential threshold and slower axonal conduction velocity than CA3 neurons. We conclude that while the electrotonically proximal axon location of action potential initiation allows granule neurons to sensitively detect and integrate synaptic inputs, the neurons are sluggish to initiate and propagate an action potential. Address for reprint requests and other correspondence: S. Mennerick, Dept. of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8134, St. Louis, MO 63110 (E-mail: menneris{at}psychiatry.wustl.edu )</description><identifier>ISSN: 0022-3077</identifier><identifier>EISSN: 1522-1598</identifier><identifier>DOI: 10.1152/jn.90295.2008</identifier><identifier>PMID: 18480368</identifier><language>eng</language><publisher>United States: Am Phys Soc</publisher><subject>Animals ; Animals, Newborn ; Ankyrins - metabolism ; Dendrites - physiology ; Dose-Response Relationship, Radiation ; Electric Stimulation - methods ; Hippocampus - cytology ; In Vitro Techniques ; Membrane Potentials - physiology ; Membrane Potentials - radiation effects ; Mossy Fibers, Hippocampal - physiology ; NAV1.2 Voltage-Gated Sodium Channel ; Nerve Tissue Proteins - metabolism ; Neural Conduction - physiology ; Neurons - classification ; Neurons - cytology ; Patch-Clamp Techniques ; Rats ; Rats, Sprague-Dawley ; Sodium Channel Blockers - pharmacology ; Sodium Channels - metabolism ; Tetrodotoxin - pharmacology</subject><ispartof>Journal of neurophysiology, 2008-07, Vol.100 (1), p.281-291</ispartof><rights>Copyright © 2008, American Physiological Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c527t-dfbc8731f9cb32cb14def4e49e70ac0a191b17ddab9721e033fc8067ae0a3b3f3</citedby><cites>FETCH-LOGICAL-c527t-dfbc8731f9cb32cb14def4e49e70ac0a191b17ddab9721e033fc8067ae0a3b3f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18480368$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kress, Geraldine J</creatorcontrib><creatorcontrib>Dowling, Margaret J</creatorcontrib><creatorcontrib>Meeks, Julian P</creatorcontrib><creatorcontrib>Mennerick, Steven</creatorcontrib><title>High Threshold, Proximal Initiation, and Slow Conduction Velocity of Action Potentials in Dentate Granule Neuron Mossy Fibers</title><title>Journal of neurophysiology</title><addtitle>J Neurophysiol</addtitle><description>Departments of 1 Psychiatry and 2 Anatomy and Neurobiology and 3 Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri Submitted 22 February 2008; accepted in final form 12 May 2008 Dentate granule neurons give rise to some of the smallest unmyelinated fibers in the mammalian CNS, the hippocampal mossy fibers. These neurons are also key regulators of physiological and pathophysiological information flow through the hippocampus. We took a comparative approach to studying mossy fiber action potential initiation and propagation in hippocampal slices from juvenile rats. Dentate granule neurons exhibited axonal action potential initiation significantly more proximal than CA3 pyramidal neurons. This conclusion was suggested by phase plot analysis of somatic action potentials and by local tetrodotoxin application to the axon and somatodendritic compartments. This conclusion was also verified by immunostaining for voltage-gated sodium channel alpha subunits and by direct dual soma/axonal recordings. Dentate neurons exhibited a significantly higher action potential threshold and slower axonal conduction velocity than CA3 neurons. We conclude that while the electrotonically proximal axon location of action potential initiation allows granule neurons to sensitively detect and integrate synaptic inputs, the neurons are sluggish to initiate and propagate an action potential. Address for reprint requests and other correspondence: S. Mennerick, Dept. of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8134, St. Louis, MO 63110 (E-mail: menneris{at}psychiatry.wustl.edu )</description><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Ankyrins - metabolism</subject><subject>Dendrites - physiology</subject><subject>Dose-Response Relationship, Radiation</subject><subject>Electric Stimulation - methods</subject><subject>Hippocampus - cytology</subject><subject>In Vitro Techniques</subject><subject>Membrane Potentials - physiology</subject><subject>Membrane Potentials - radiation effects</subject><subject>Mossy Fibers, Hippocampal - physiology</subject><subject>NAV1.2 Voltage-Gated Sodium Channel</subject><subject>Nerve Tissue Proteins - metabolism</subject><subject>Neural Conduction - physiology</subject><subject>Neurons - classification</subject><subject>Neurons - cytology</subject><subject>Patch-Clamp Techniques</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Sodium Channel Blockers - pharmacology</subject><subject>Sodium Channels - metabolism</subject><subject>Tetrodotoxin - pharmacology</subject><issn>0022-3077</issn><issn>1522-1598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp1kU1v1DAQhi1ERZfCkSvyjUuzjO2kTi5I1ZZtK7VQqVuuluOPjVeuvXIS2hz473i7VYEDJ49mnved8QxCHwjMCano502YN0Cbak4B6ldolnO0IFVTv0YzgBwz4PwQve37DQDwCugbdEjqsgZ2Us_Qrwu37vCqS6bvotfH-CbFR3cvPb4MbnBycDEcYxk0vvXxAS9i0KPaJfEP46Nyw4Sjxaf71E0cTMgi32MX8FmO5WDweZJh9AZ_M2PK0HXs-wkvXWtS_w4d2Eyb98_vEbpbfl0tLoqr7-eXi9OrQlWUD4W2rao5I7ZRLaOqJaU2tjRlYzhIBZI0pCVca9k2nBIDjFlVwwmXBiRrmWVH6Mvedzu290arPFmSXmxT_mmaRJRO_FsJrhPr-FPQsmFlTbJBsTdQKY-fjH3REhC7O4hNEE93ELs7ZP7j3w3_0M-Lz8CnPdDl_T-4ZMS2m3oXfVxPOy8C2VfQp9bs_-Ry9H5lHocseVGIrbbsN6byp8g</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Kress, Geraldine J</creator><creator>Dowling, Margaret J</creator><creator>Meeks, Julian P</creator><creator>Mennerick, Steven</creator><general>Am Phys Soc</general><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20080701</creationdate><title>High Threshold, Proximal Initiation, and Slow Conduction Velocity of Action Potentials in Dentate Granule Neuron Mossy Fibers</title><author>Kress, Geraldine J ; Dowling, Margaret J ; Meeks, Julian P ; Mennerick, Steven</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c527t-dfbc8731f9cb32cb14def4e49e70ac0a191b17ddab9721e033fc8067ae0a3b3f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Ankyrins - metabolism</topic><topic>Dendrites - physiology</topic><topic>Dose-Response Relationship, Radiation</topic><topic>Electric Stimulation - methods</topic><topic>Hippocampus - cytology</topic><topic>In Vitro Techniques</topic><topic>Membrane Potentials - physiology</topic><topic>Membrane Potentials - radiation effects</topic><topic>Mossy Fibers, Hippocampal - physiology</topic><topic>NAV1.2 Voltage-Gated Sodium Channel</topic><topic>Nerve Tissue Proteins - metabolism</topic><topic>Neural Conduction - physiology</topic><topic>Neurons - classification</topic><topic>Neurons - cytology</topic><topic>Patch-Clamp Techniques</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Sodium Channel Blockers - pharmacology</topic><topic>Sodium Channels - metabolism</topic><topic>Tetrodotoxin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kress, Geraldine J</creatorcontrib><creatorcontrib>Dowling, Margaret J</creatorcontrib><creatorcontrib>Meeks, Julian P</creatorcontrib><creatorcontrib>Mennerick, Steven</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of neurophysiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kress, Geraldine J</au><au>Dowling, Margaret J</au><au>Meeks, Julian P</au><au>Mennerick, Steven</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High Threshold, Proximal Initiation, and Slow Conduction Velocity of Action Potentials in Dentate Granule Neuron Mossy Fibers</atitle><jtitle>Journal of neurophysiology</jtitle><addtitle>J Neurophysiol</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>100</volume><issue>1</issue><spage>281</spage><epage>291</epage><pages>281-291</pages><issn>0022-3077</issn><eissn>1522-1598</eissn><abstract>Departments of 1 Psychiatry and 2 Anatomy and Neurobiology and 3 Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri Submitted 22 February 2008; accepted in final form 12 May 2008 Dentate granule neurons give rise to some of the smallest unmyelinated fibers in the mammalian CNS, the hippocampal mossy fibers. These neurons are also key regulators of physiological and pathophysiological information flow through the hippocampus. We took a comparative approach to studying mossy fiber action potential initiation and propagation in hippocampal slices from juvenile rats. Dentate granule neurons exhibited axonal action potential initiation significantly more proximal than CA3 pyramidal neurons. This conclusion was suggested by phase plot analysis of somatic action potentials and by local tetrodotoxin application to the axon and somatodendritic compartments. This conclusion was also verified by immunostaining for voltage-gated sodium channel alpha subunits and by direct dual soma/axonal recordings. Dentate neurons exhibited a significantly higher action potential threshold and slower axonal conduction velocity than CA3 neurons. We conclude that while the electrotonically proximal axon location of action potential initiation allows granule neurons to sensitively detect and integrate synaptic inputs, the neurons are sluggish to initiate and propagate an action potential. Address for reprint requests and other correspondence: S. Mennerick, Dept. of Psychiatry, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8134, St. Louis, MO 63110 (E-mail: menneris{at}psychiatry.wustl.edu )</abstract><cop>United States</cop><pub>Am Phys Soc</pub><pmid>18480368</pmid><doi>10.1152/jn.90295.2008</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-3077
ispartof Journal of neurophysiology, 2008-07, Vol.100 (1), p.281-291
issn 0022-3077
1522-1598
language eng
recordid cdi_highwire_physiology_jn_100_1_281
source American Physiological Society Journals; American Physiological Society:Jisc Collections:American Physiological Society Journals ‘Read Publish & Join’ Agreement:2023-2024 (Reading list)
subjects Animals
Animals, Newborn
Ankyrins - metabolism
Dendrites - physiology
Dose-Response Relationship, Radiation
Electric Stimulation - methods
Hippocampus - cytology
In Vitro Techniques
Membrane Potentials - physiology
Membrane Potentials - radiation effects
Mossy Fibers, Hippocampal - physiology
NAV1.2 Voltage-Gated Sodium Channel
Nerve Tissue Proteins - metabolism
Neural Conduction - physiology
Neurons - classification
Neurons - cytology
Patch-Clamp Techniques
Rats
Rats, Sprague-Dawley
Sodium Channel Blockers - pharmacology
Sodium Channels - metabolism
Tetrodotoxin - pharmacology
title High Threshold, Proximal Initiation, and Slow Conduction Velocity of Action Potentials in Dentate Granule Neuron Mossy Fibers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A53%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%20Threshold,%20Proximal%20Initiation,%20and%20Slow%20Conduction%20Velocity%20of%20Action%20Potentials%20in%20Dentate%20Granule%20Neuron%20Mossy%20Fibers&rft.jtitle=Journal%20of%20neurophysiology&rft.au=Kress,%20Geraldine%20J&rft.date=2008-07-01&rft.volume=100&rft.issue=1&rft.spage=281&rft.epage=291&rft.pages=281-291&rft.issn=0022-3077&rft.eissn=1522-1598&rft_id=info:doi/10.1152/jn.90295.2008&rft_dat=%3Cpubmed_highw%3E18480368%3C/pubmed_highw%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c527t-dfbc8731f9cb32cb14def4e49e70ac0a191b17ddab9721e033fc8067ae0a3b3f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/18480368&rfr_iscdi=true