Loading…

Differential Roles of Ionotropic Glutamate Receptors in Canine Medullary Inspiratory Neurons of the Ventral Respiratory Group

  1 Zablocki Veterans Affairs Medical Center, Milwaukee 53295;   2 Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; and   3 Department of Physiology and Institute for Neuroscience, Northwestern University Medical School, Chicago, Illinois 60611 Krolo, M., E. A....

Full description

Saved in:
Bibliographic Details
Published in:Journal of neurophysiology 1999-07, Vol.82 (1), p.60-68
Main Authors: Krolo, M, Stuth, E. A, Tonkovic-Capin, M, Dogas, Z, Hopp, F. A, McCrimmon, D. R, Zuperku, E. J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:  1 Zablocki Veterans Affairs Medical Center, Milwaukee 53295;   2 Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226; and   3 Department of Physiology and Institute for Neuroscience, Northwestern University Medical School, Chicago, Illinois 60611 Krolo, M., E. A. Stuth, M. Tonkovic-Capin, Z. Dogas, F. A. Hopp, D. R. McCrimmon, and E. J. Zuperku. Differential Roles of Ionotropic Glutamate Receptors in Canine Medullary Inspiratory Neurons of the Ventral Respiratory Group. J. Neurophysiol. 82: 60-68, 1999. The relative roles of ionotropic N -methyl- D -aspartate (NMDA) and non-NMDA glutamate receptors in supplying excitatory drive to inspiratory (I) augmenting pattern neurons of the ventral respiratory group were studied in anesthetized, ventilated, paralyzed, and vagotomized dogs. Multibarrel micropipettes were used to record simultaneously single-unit neuronal activity and pressure microeject the NMDA antagonist, 2-amino-5-phosphonovalerate (AP5; 2 mM), the non-NMDA antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo( f )quinoxaline (NBQX; 0.25 mM), and an artificial cerebrospinal fluid vehicle. Ejected volume-rates were measured directly via meniscus level changes. The moving time average of phrenic nerve activity was used to determine respiratory phase durations and to synchronize cycle-triggered histograms of the discharge patterns. Both AP5 and NBQX produced dose-dependent reductions in peak spontaneous I neuronal discharge frequency ( F n ). The average (± SE) maximum reduction in peak F n produced by AP5 was 69.1 ± 4.2% and by NBQX was 47.1 ± 3.3%. Blockade of both glutamate receptor subtypes nearly silenced these neurons, suggesting that their activity is highly dependent on excitatory synaptic drive mediated by ionotropic glutamate receptors. Differential effects were found for the two glutamatergic antagonists. AP5 produced downward, parallel shifts in the augmenting pattern of discharge, whereas NBQX reduced the slope of the augmenting discharge pattern. These results suggest that time-varying excitatory input patterns to the canine I bulbospinal neurons are mediated by non-NMDA glutamate receptors and that constant or tonic input patterns to these neurons are mediated by NMDA receptors.
ISSN:0022-3077
1522-1598
DOI:10.1152/jn.1999.82.1.60