Loading…

Time-scales of magma formation, ascent and storage beneath subduction-zone volcanoes

There is now sufficient information to attempt an integrated model for melt generation, transfer and storage beneath subduction-zone volcanoes. Fluid release from the subducting oceanic crust into the mantle wedge may occur over a period ranging from a few hundred kyr, to as little as less than 1 ky...

Full description

Saved in:
Bibliographic Details
Published in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2000-05, Vol.358 (1770), p.1443-1464
Main Authors: Turner, S. P., George, R. M. M., Evans, P. J., Hawkesworth, C. J., Zellmer, G. F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a528t-69ec5e1bc35f6ddf0db998c46761f60f53c9e64c4e9d3461bf7869f5435104de3
cites cdi_FETCH-LOGICAL-a528t-69ec5e1bc35f6ddf0db998c46761f60f53c9e64c4e9d3461bf7869f5435104de3
container_end_page 1464
container_issue 1770
container_start_page 1443
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 358
creator Turner, S. P.
George, R. M. M.
Evans, P. J.
Hawkesworth, C. J.
Zellmer, G. F.
description There is now sufficient information to attempt an integrated model for melt generation, transfer and storage beneath subduction-zone volcanoes. Fluid release from the subducting oceanic crust into the mantle wedge may occur over a period ranging from a few hundred kyr, to as little as less than 1 kyr, before eruption. This supports models in which fluid addition is closely linked to partial melting, though there may also be evidence for a component of decompression melting. The timing of the onset of fluid addition may be linked to the rate of subduction (i.e. water supply rate) and the angle of subduction, and, consequently, the thermal structure of the mantle wedge. In contrast, contributions from subducted sediments to subduction-zone lava sources appear to occur some 350 kyr-4 Myr before eruption. Evidence for partial melting of the sediment component, combined with the short fluid transfer times, phenocryst equilibration temperatures and other observations all point to quite high mantle wedge temperatures close to the interface with the subducting plate. New 226Ra data permit only a short period of time between fluid addition and eruption. This requires rapid melt segregation, magma ascent by channelled flow and minimal residence time within the lithosphere. Typically, the evolution from basalt to andesite occurs rapidly during ascent or in magma reservoirs, inferred from some geophysical data to lie within the lithospheric mantle. Mineral isochron data suggest that some andesitic magmas subsequently stall in more shallow crustal level magma chambers, where they can evolve to dacitic compositions via fractionation, typically combined with assimilation, on time-scales of a few thousand years or less.
doi_str_mv 10.1098/rsta.2000.0598
format article
fullrecord <record><control><sourceid>jstor_highw</sourceid><recordid>TN_cdi_highwire_royalsociety_roypta_358_1770_1443</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>2666923</jstor_id><sourcerecordid>2666923</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528t-69ec5e1bc35f6ddf0db998c46761f60f53c9e64c4e9d3461bf7869f5435104de3</originalsourceid><addsrcrecordid>eNp9kUtP3DAUhSMEEs8tKxb-Ac1gx4_EOxDqFCTUCnUK7CzHuZ7JkMQj29N2-PV1FITEoqzsq3M_n6PjLDsneEawrC59iHpWYIxnmMtqLzsirCR5IUWxn-5UsJxj-nyYHYewxpgQwYujbLFoe8iD0R0E5Czq9bLXyDrf69i64QvSwcAQkR4aFKLzegmohgF0XKGwrZutGdfyVzcA-u06owcH4TQ7sLoLcPZ2nmS_5l8XN7f5_Y9vdzfX97nmRRVzIcFwILWh3IqmsbippawME6UgVmDLqZEgmGEgG8oEqW1ZCWk5o5xg1gA9yWbTu8a7EDxYtfFtr_1OEazGTtTYiRo7UWMnCaAT4N0uBXOmhbhTa7f1Qxr_T11M1Hps4N2jEELIgiY5n-Q2RPj7Lmv_okRJS64eK6bmT4I9LH5-V_O0T6b9Vbtc_Wk9qA9p0rBJ9pRXipRlSsTY6HH1KTMGNm6I6as-kspuu05tGkv_AeDBqUE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Time-scales of magma formation, ascent and storage beneath subduction-zone volcanoes</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Turner, S. P. ; George, R. M. M. ; Evans, P. J. ; Hawkesworth, C. J. ; Zellmer, G. F.</creator><contributor>Neuberg, J. ; Francis, P. ; Sparks, R. S. J. ; Francis, P. ; Sparks, R. S. J. ; Neuberg, J.</contributor><creatorcontrib>Turner, S. P. ; George, R. M. M. ; Evans, P. J. ; Hawkesworth, C. J. ; Zellmer, G. F. ; Neuberg, J. ; Francis, P. ; Sparks, R. S. J. ; Francis, P. ; Sparks, R. S. J. ; Neuberg, J.</creatorcontrib><description>There is now sufficient information to attempt an integrated model for melt generation, transfer and storage beneath subduction-zone volcanoes. Fluid release from the subducting oceanic crust into the mantle wedge may occur over a period ranging from a few hundred kyr, to as little as less than 1 kyr, before eruption. This supports models in which fluid addition is closely linked to partial melting, though there may also be evidence for a component of decompression melting. The timing of the onset of fluid addition may be linked to the rate of subduction (i.e. water supply rate) and the angle of subduction, and, consequently, the thermal structure of the mantle wedge. In contrast, contributions from subducted sediments to subduction-zone lava sources appear to occur some 350 kyr-4 Myr before eruption. Evidence for partial melting of the sediment component, combined with the short fluid transfer times, phenocryst equilibration temperatures and other observations all point to quite high mantle wedge temperatures close to the interface with the subducting plate. New 226Ra data permit only a short period of time between fluid addition and eruption. This requires rapid melt segregation, magma ascent by channelled flow and minimal residence time within the lithosphere. Typically, the evolution from basalt to andesite occurs rapidly during ascent or in magma reservoirs, inferred from some geophysical data to lie within the lithospheric mantle. Mineral isochron data suggest that some andesitic magmas subsequently stall in more shallow crustal level magma chambers, where they can evolve to dacitic compositions via fractionation, typically combined with assimilation, on time-scales of a few thousand years or less.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2000.0598</identifier><language>eng</language><publisher>The Royal Society</publisher><subject>Andesite ; Basalt ; Crustal Residence ; Lava ; Magma Ascent ; Melt Generation ; Melting ; Oceanic crust ; Peridotite ; Sediments ; Subduction ; Subduction Zone ; Subduction zones ; Time-Scales ; Volcanoes</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2000-05, Vol.358 (1770), p.1443-1464</ispartof><rights>Copyright 2000 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a528t-69ec5e1bc35f6ddf0db998c46761f60f53c9e64c4e9d3461bf7869f5435104de3</citedby><cites>FETCH-LOGICAL-a528t-69ec5e1bc35f6ddf0db998c46761f60f53c9e64c4e9d3461bf7869f5435104de3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/2666923$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/2666923$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><contributor>Neuberg, J.</contributor><contributor>Francis, P.</contributor><contributor>Sparks, R. S. J.</contributor><contributor>Francis, P.</contributor><contributor>Sparks, R. S. J.</contributor><contributor>Neuberg, J.</contributor><creatorcontrib>Turner, S. P.</creatorcontrib><creatorcontrib>George, R. M. M.</creatorcontrib><creatorcontrib>Evans, P. J.</creatorcontrib><creatorcontrib>Hawkesworth, C. J.</creatorcontrib><creatorcontrib>Zellmer, G. F.</creatorcontrib><title>Time-scales of magma formation, ascent and storage beneath subduction-zone volcanoes</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><description>There is now sufficient information to attempt an integrated model for melt generation, transfer and storage beneath subduction-zone volcanoes. Fluid release from the subducting oceanic crust into the mantle wedge may occur over a period ranging from a few hundred kyr, to as little as less than 1 kyr, before eruption. This supports models in which fluid addition is closely linked to partial melting, though there may also be evidence for a component of decompression melting. The timing of the onset of fluid addition may be linked to the rate of subduction (i.e. water supply rate) and the angle of subduction, and, consequently, the thermal structure of the mantle wedge. In contrast, contributions from subducted sediments to subduction-zone lava sources appear to occur some 350 kyr-4 Myr before eruption. Evidence for partial melting of the sediment component, combined with the short fluid transfer times, phenocryst equilibration temperatures and other observations all point to quite high mantle wedge temperatures close to the interface with the subducting plate. New 226Ra data permit only a short period of time between fluid addition and eruption. This requires rapid melt segregation, magma ascent by channelled flow and minimal residence time within the lithosphere. Typically, the evolution from basalt to andesite occurs rapidly during ascent or in magma reservoirs, inferred from some geophysical data to lie within the lithospheric mantle. Mineral isochron data suggest that some andesitic magmas subsequently stall in more shallow crustal level magma chambers, where they can evolve to dacitic compositions via fractionation, typically combined with assimilation, on time-scales of a few thousand years or less.</description><subject>Andesite</subject><subject>Basalt</subject><subject>Crustal Residence</subject><subject>Lava</subject><subject>Magma Ascent</subject><subject>Melt Generation</subject><subject>Melting</subject><subject>Oceanic crust</subject><subject>Peridotite</subject><subject>Sediments</subject><subject>Subduction</subject><subject>Subduction Zone</subject><subject>Subduction zones</subject><subject>Time-Scales</subject><subject>Volcanoes</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNp9kUtP3DAUhSMEEs8tKxb-Ac1gx4_EOxDqFCTUCnUK7CzHuZ7JkMQj29N2-PV1FITEoqzsq3M_n6PjLDsneEawrC59iHpWYIxnmMtqLzsirCR5IUWxn-5UsJxj-nyYHYewxpgQwYujbLFoe8iD0R0E5Czq9bLXyDrf69i64QvSwcAQkR4aFKLzegmohgF0XKGwrZutGdfyVzcA-u06owcH4TQ7sLoLcPZ2nmS_5l8XN7f5_Y9vdzfX97nmRRVzIcFwILWh3IqmsbippawME6UgVmDLqZEgmGEgG8oEqW1ZCWk5o5xg1gA9yWbTu8a7EDxYtfFtr_1OEazGTtTYiRo7UWMnCaAT4N0uBXOmhbhTa7f1Qxr_T11M1Hps4N2jEELIgiY5n-Q2RPj7Lmv_okRJS64eK6bmT4I9LH5-V_O0T6b9Vbtc_Wk9qA9p0rBJ9pRXipRlSsTY6HH1KTMGNm6I6as-kspuu05tGkv_AeDBqUE</recordid><startdate>20000515</startdate><enddate>20000515</enddate><creator>Turner, S. P.</creator><creator>George, R. M. M.</creator><creator>Evans, P. J.</creator><creator>Hawkesworth, C. J.</creator><creator>Zellmer, G. F.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20000515</creationdate><title>Time-scales of magma formation, ascent and storage beneath subduction-zone volcanoes</title><author>Turner, S. P. ; George, R. M. M. ; Evans, P. J. ; Hawkesworth, C. J. ; Zellmer, G. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528t-69ec5e1bc35f6ddf0db998c46761f60f53c9e64c4e9d3461bf7869f5435104de3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Andesite</topic><topic>Basalt</topic><topic>Crustal Residence</topic><topic>Lava</topic><topic>Magma Ascent</topic><topic>Melt Generation</topic><topic>Melting</topic><topic>Oceanic crust</topic><topic>Peridotite</topic><topic>Sediments</topic><topic>Subduction</topic><topic>Subduction Zone</topic><topic>Subduction zones</topic><topic>Time-Scales</topic><topic>Volcanoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Turner, S. P.</creatorcontrib><creatorcontrib>George, R. M. M.</creatorcontrib><creatorcontrib>Evans, P. J.</creatorcontrib><creatorcontrib>Hawkesworth, C. J.</creatorcontrib><creatorcontrib>Zellmer, G. F.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Turner, S. P.</au><au>George, R. M. M.</au><au>Evans, P. J.</au><au>Hawkesworth, C. J.</au><au>Zellmer, G. F.</au><au>Neuberg, J.</au><au>Francis, P.</au><au>Sparks, R. S. J.</au><au>Francis, P.</au><au>Sparks, R. S. J.</au><au>Neuberg, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-scales of magma formation, ascent and storage beneath subduction-zone volcanoes</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><date>2000-05-15</date><risdate>2000</risdate><volume>358</volume><issue>1770</issue><spage>1443</spage><epage>1464</epage><pages>1443-1464</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>There is now sufficient information to attempt an integrated model for melt generation, transfer and storage beneath subduction-zone volcanoes. Fluid release from the subducting oceanic crust into the mantle wedge may occur over a period ranging from a few hundred kyr, to as little as less than 1 kyr, before eruption. This supports models in which fluid addition is closely linked to partial melting, though there may also be evidence for a component of decompression melting. The timing of the onset of fluid addition may be linked to the rate of subduction (i.e. water supply rate) and the angle of subduction, and, consequently, the thermal structure of the mantle wedge. In contrast, contributions from subducted sediments to subduction-zone lava sources appear to occur some 350 kyr-4 Myr before eruption. Evidence for partial melting of the sediment component, combined with the short fluid transfer times, phenocryst equilibration temperatures and other observations all point to quite high mantle wedge temperatures close to the interface with the subducting plate. New 226Ra data permit only a short period of time between fluid addition and eruption. This requires rapid melt segregation, magma ascent by channelled flow and minimal residence time within the lithosphere. Typically, the evolution from basalt to andesite occurs rapidly during ascent or in magma reservoirs, inferred from some geophysical data to lie within the lithospheric mantle. Mineral isochron data suggest that some andesitic magmas subsequently stall in more shallow crustal level magma chambers, where they can evolve to dacitic compositions via fractionation, typically combined with assimilation, on time-scales of a few thousand years or less.</abstract><pub>The Royal Society</pub><doi>10.1098/rsta.2000.0598</doi><tpages>22</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2000-05, Vol.358 (1770), p.1443-1464
issn 1364-503X
1471-2962
language eng
recordid cdi_highwire_royalsociety_roypta_358_1770_1443
source JSTOR Archival Journals and Primary Sources Collection; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
subjects Andesite
Basalt
Crustal Residence
Lava
Magma Ascent
Melt Generation
Melting
Oceanic crust
Peridotite
Sediments
Subduction
Subduction Zone
Subduction zones
Time-Scales
Volcanoes
title Time-scales of magma formation, ascent and storage beneath subduction-zone volcanoes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A12%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-scales%20of%20magma%20formation,%20ascent%20and%20storage%20beneath%20subduction-zone%20volcanoes&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Turner,%20S.%20P.&rft.date=2000-05-15&rft.volume=358&rft.issue=1770&rft.spage=1443&rft.epage=1464&rft.pages=1443-1464&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2000.0598&rft_dat=%3Cjstor_highw%3E2666923%3C/jstor_highw%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528t-69ec5e1bc35f6ddf0db998c46761f60f53c9e64c4e9d3461bf7869f5435104de3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=2666923&rfr_iscdi=true