Loading…

Inorganic nanotubes

Following the discovery of carbon fullerenes and carbon nanotubes, it was hypothesized that nanoparticles of inorganic compounds with layered (two-dimensional) structure, such as MoS2, will not be stable against folding and form nanotubes and fullerene-like structures: IF. The synthesis of numerous...

Full description

Saved in:
Bibliographic Details
Published in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2004-10, Vol.362 (1823), p.2099-2125
Main Authors: Tenne, Reshef, Rao, C. N. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c601t-47be0adeb25ef6d27bbfea5d1660b5698ddeff6387b2d402a96d81ceabd0722a3
cites cdi_FETCH-LOGICAL-c601t-47be0adeb25ef6d27bbfea5d1660b5698ddeff6387b2d402a96d81ceabd0722a3
container_end_page 2125
container_issue 1823
container_start_page 2099
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 362
creator Tenne, Reshef
Rao, C. N. R.
description Following the discovery of carbon fullerenes and carbon nanotubes, it was hypothesized that nanoparticles of inorganic compounds with layered (two-dimensional) structure, such as MoS2, will not be stable against folding and form nanotubes and fullerene-like structures: IF. The synthesis of numerous other inorganic nanotubes has been reported in recent years. Various techniques for the synthesis of inorganic nanotubes, including high-temperature reactions and strategies based on 'chemie douce' (soft chemistry, i.e. low-temperature) processes, are described. First-principle, density functional theory based calculations are able to provide substantial information on the structure and properties of such nanotubes. Various properties of inorganic nanotubes, including mechanical, electronic and optical properties, are described in brief. Some potential applications of the nanotubes in tribology, protection against impact, (photo)catalysis, batteries, etc., are discussed.
doi_str_mv 10.1098/rsta.2004.1431
format article
fullrecord <record><control><sourceid>jstor_highw</sourceid><recordid>TN_cdi_highwire_royalsociety_roypta_362_1823_2099</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4142434</jstor_id><sourcerecordid>4142434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c601t-47be0adeb25ef6d27bbfea5d1660b5698ddeff6387b2d402a96d81ceabd0722a3</originalsourceid><addsrcrecordid>eNp9kM1v1DAQxSNERUvhhMQJIU7csvXYju3cqCo-KrWqRBfEbeTETuslG6d2Aix_Pc5mVbRC9GSP5vdm3pssewlkAaRUJyEOekEJ4QvgDB5lR8Al5LQU9HH6M8HzgrBvh9nTGFeEAIiCPskOoWCScMmOshfnnQ83unP1m053fhgrG59lB41uo32-e4-zLx_eL88-5RdXH8_PTi_yWhAYci4rS7SxFS1sIwyVVdVYXRgQglSFKJUxtmkEU7KihhOqS2EU1FZXhkhKNTvO3s5z--DvRhsHXLtY27bVnfVjRCGUKgRAAhczWAcfY7AN9sGtddggEJzOgNMZcDoDTmdIgte7yWO1tuYvvsudgDgDwW9SRF87O2xw5cfQpRI_Xy9PoSzFDyaoA0UZEsWASK4Kjr9dv903AZgAdDGOFrfYvo9_bbGHtv43zKtZtYqDD_dZOHDKGU_tfG67ONhf920dvqOQTBb4VXEkXFxfLvkSZeJh5m_dze1PFyzuuUlFn9ZPubaJKCnLpHn3oGYyXPtusN2wr8RmbFvsTcP-AJ2AzvU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>66885611</pqid></control><display><type>article</type><title>Inorganic nanotubes</title><source>JSTOR Archival Journals</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Tenne, Reshef ; Rao, C. N. R.</creator><contributor>Terrones, Mauricio ; Terrones, Humberto ; Terrones, Mauricio ; Terrones, Humberto</contributor><creatorcontrib>Tenne, Reshef ; Rao, C. N. R. ; Terrones, Mauricio ; Terrones, Humberto ; Terrones, Mauricio ; Terrones, Humberto</creatorcontrib><description>Following the discovery of carbon fullerenes and carbon nanotubes, it was hypothesized that nanoparticles of inorganic compounds with layered (two-dimensional) structure, such as MoS2, will not be stable against folding and form nanotubes and fullerene-like structures: IF. The synthesis of numerous other inorganic nanotubes has been reported in recent years. Various techniques for the synthesis of inorganic nanotubes, including high-temperature reactions and strategies based on 'chemie douce' (soft chemistry, i.e. low-temperature) processes, are described. First-principle, density functional theory based calculations are able to provide substantial information on the structure and properties of such nanotubes. Various properties of inorganic nanotubes, including mechanical, electronic and optical properties, are described in brief. Some potential applications of the nanotubes in tribology, protection against impact, (photo)catalysis, batteries, etc., are discussed.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2004.1431</identifier><identifier>PMID: 15370473</identifier><language>eng</language><publisher>England: The Royal Society</publisher><subject>Atoms ; Biocompatible Materials - chemistry ; Boron ; Crystallization - methods ; Crystallization - trends ; Electrochemistry - instrumentation ; Electrochemistry - methods ; Electrochemistry - trends ; Electronic structure ; Energy gaps ; Equipment Design ; Fullerene-Like Structures ; Fullerenes ; IFs ; Inorganic Chemicals - chemistry ; Inorganic Nanotubes ; Macromolecular Substances ; Materials ; Molecular Conformation ; Nanoparticles ; Nanotechnology - instrumentation ; Nanotechnology - methods ; Nanotechnology - trends ; Nanotubes ; Nanotubes - chemistry ; Nanotubes - ultrastructure ; Nanotubes, Carbon ; Oxides ; Semiconductors ; Vanadium oxides</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2004-10, Vol.362 (1823), p.2099-2125</ispartof><rights>Copyright 2004 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c601t-47be0adeb25ef6d27bbfea5d1660b5698ddeff6387b2d402a96d81ceabd0722a3</citedby><cites>FETCH-LOGICAL-c601t-47be0adeb25ef6d27bbfea5d1660b5698ddeff6387b2d402a96d81ceabd0722a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4142434$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4142434$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15370473$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Terrones, Mauricio</contributor><contributor>Terrones, Humberto</contributor><contributor>Terrones, Mauricio</contributor><contributor>Terrones, Humberto</contributor><creatorcontrib>Tenne, Reshef</creatorcontrib><creatorcontrib>Rao, C. N. R.</creatorcontrib><title>Inorganic nanotubes</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><description>Following the discovery of carbon fullerenes and carbon nanotubes, it was hypothesized that nanoparticles of inorganic compounds with layered (two-dimensional) structure, such as MoS2, will not be stable against folding and form nanotubes and fullerene-like structures: IF. The synthesis of numerous other inorganic nanotubes has been reported in recent years. Various techniques for the synthesis of inorganic nanotubes, including high-temperature reactions and strategies based on 'chemie douce' (soft chemistry, i.e. low-temperature) processes, are described. First-principle, density functional theory based calculations are able to provide substantial information on the structure and properties of such nanotubes. Various properties of inorganic nanotubes, including mechanical, electronic and optical properties, are described in brief. Some potential applications of the nanotubes in tribology, protection against impact, (photo)catalysis, batteries, etc., are discussed.</description><subject>Atoms</subject><subject>Biocompatible Materials - chemistry</subject><subject>Boron</subject><subject>Crystallization - methods</subject><subject>Crystallization - trends</subject><subject>Electrochemistry - instrumentation</subject><subject>Electrochemistry - methods</subject><subject>Electrochemistry - trends</subject><subject>Electronic structure</subject><subject>Energy gaps</subject><subject>Equipment Design</subject><subject>Fullerene-Like Structures</subject><subject>Fullerenes</subject><subject>IFs</subject><subject>Inorganic Chemicals - chemistry</subject><subject>Inorganic Nanotubes</subject><subject>Macromolecular Substances</subject><subject>Materials</subject><subject>Molecular Conformation</subject><subject>Nanoparticles</subject><subject>Nanotechnology - instrumentation</subject><subject>Nanotechnology - methods</subject><subject>Nanotechnology - trends</subject><subject>Nanotubes</subject><subject>Nanotubes - chemistry</subject><subject>Nanotubes - ultrastructure</subject><subject>Nanotubes, Carbon</subject><subject>Oxides</subject><subject>Semiconductors</subject><subject>Vanadium oxides</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp9kM1v1DAQxSNERUvhhMQJIU7csvXYju3cqCo-KrWqRBfEbeTETuslG6d2Aix_Pc5mVbRC9GSP5vdm3pssewlkAaRUJyEOekEJ4QvgDB5lR8Al5LQU9HH6M8HzgrBvh9nTGFeEAIiCPskOoWCScMmOshfnnQ83unP1m053fhgrG59lB41uo32-e4-zLx_eL88-5RdXH8_PTi_yWhAYci4rS7SxFS1sIwyVVdVYXRgQglSFKJUxtmkEU7KihhOqS2EU1FZXhkhKNTvO3s5z--DvRhsHXLtY27bVnfVjRCGUKgRAAhczWAcfY7AN9sGtddggEJzOgNMZcDoDTmdIgte7yWO1tuYvvsudgDgDwW9SRF87O2xw5cfQpRI_Xy9PoSzFDyaoA0UZEsWASK4Kjr9dv903AZgAdDGOFrfYvo9_bbGHtv43zKtZtYqDD_dZOHDKGU_tfG67ONhf920dvqOQTBb4VXEkXFxfLvkSZeJh5m_dze1PFyzuuUlFn9ZPubaJKCnLpHn3oGYyXPtusN2wr8RmbFvsTcP-AJ2AzvU</recordid><startdate>20041015</startdate><enddate>20041015</enddate><creator>Tenne, Reshef</creator><creator>Rao, C. N. R.</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20041015</creationdate><title>Inorganic nanotubes</title><author>Tenne, Reshef ; Rao, C. N. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c601t-47be0adeb25ef6d27bbfea5d1660b5698ddeff6387b2d402a96d81ceabd0722a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Atoms</topic><topic>Biocompatible Materials - chemistry</topic><topic>Boron</topic><topic>Crystallization - methods</topic><topic>Crystallization - trends</topic><topic>Electrochemistry - instrumentation</topic><topic>Electrochemistry - methods</topic><topic>Electrochemistry - trends</topic><topic>Electronic structure</topic><topic>Energy gaps</topic><topic>Equipment Design</topic><topic>Fullerene-Like Structures</topic><topic>Fullerenes</topic><topic>IFs</topic><topic>Inorganic Chemicals - chemistry</topic><topic>Inorganic Nanotubes</topic><topic>Macromolecular Substances</topic><topic>Materials</topic><topic>Molecular Conformation</topic><topic>Nanoparticles</topic><topic>Nanotechnology - instrumentation</topic><topic>Nanotechnology - methods</topic><topic>Nanotechnology - trends</topic><topic>Nanotubes</topic><topic>Nanotubes - chemistry</topic><topic>Nanotubes - ultrastructure</topic><topic>Nanotubes, Carbon</topic><topic>Oxides</topic><topic>Semiconductors</topic><topic>Vanadium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tenne, Reshef</creatorcontrib><creatorcontrib>Rao, C. N. R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tenne, Reshef</au><au>Rao, C. N. R.</au><au>Terrones, Mauricio</au><au>Terrones, Humberto</au><au>Terrones, Mauricio</au><au>Terrones, Humberto</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Inorganic nanotubes</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><date>2004-10-15</date><risdate>2004</risdate><volume>362</volume><issue>1823</issue><spage>2099</spage><epage>2125</epage><pages>2099-2125</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>Following the discovery of carbon fullerenes and carbon nanotubes, it was hypothesized that nanoparticles of inorganic compounds with layered (two-dimensional) structure, such as MoS2, will not be stable against folding and form nanotubes and fullerene-like structures: IF. The synthesis of numerous other inorganic nanotubes has been reported in recent years. Various techniques for the synthesis of inorganic nanotubes, including high-temperature reactions and strategies based on 'chemie douce' (soft chemistry, i.e. low-temperature) processes, are described. First-principle, density functional theory based calculations are able to provide substantial information on the structure and properties of such nanotubes. Various properties of inorganic nanotubes, including mechanical, electronic and optical properties, are described in brief. Some potential applications of the nanotubes in tribology, protection against impact, (photo)catalysis, batteries, etc., are discussed.</abstract><cop>England</cop><pub>The Royal Society</pub><pmid>15370473</pmid><doi>10.1098/rsta.2004.1431</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2004-10, Vol.362 (1823), p.2099-2125
issn 1364-503X
1471-2962
language eng
recordid cdi_highwire_royalsociety_roypta_362_1823_2099
source JSTOR Archival Journals; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
subjects Atoms
Biocompatible Materials - chemistry
Boron
Crystallization - methods
Crystallization - trends
Electrochemistry - instrumentation
Electrochemistry - methods
Electrochemistry - trends
Electronic structure
Energy gaps
Equipment Design
Fullerene-Like Structures
Fullerenes
IFs
Inorganic Chemicals - chemistry
Inorganic Nanotubes
Macromolecular Substances
Materials
Molecular Conformation
Nanoparticles
Nanotechnology - instrumentation
Nanotechnology - methods
Nanotechnology - trends
Nanotubes
Nanotubes - chemistry
Nanotubes - ultrastructure
Nanotubes, Carbon
Oxides
Semiconductors
Vanadium oxides
title Inorganic nanotubes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A59%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Inorganic%20nanotubes&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Tenne,%20Reshef&rft.date=2004-10-15&rft.volume=362&rft.issue=1823&rft.spage=2099&rft.epage=2125&rft.pages=2099-2125&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2004.1431&rft_dat=%3Cjstor_highw%3E4142434%3C/jstor_highw%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c601t-47be0adeb25ef6d27bbfea5d1660b5698ddeff6387b2d402a96d81ceabd0722a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=66885611&rft_id=info:pmid/15370473&rft_jstor_id=4142434&rfr_iscdi=true