Loading…

Enhanced continua and discrete lattices for modelling granular assemblies

This article discusses the derivation of continuum models that can be used for modelling the inhomogeneous mechanical behaviour of granular assemblies. These so-called kinematically enhanced models are of the strain-gradient type and of the strain-gradient micro-polar type, and are derived by means...

Full description

Saved in:
Bibliographic Details
Published in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2005-11, Vol.363 (1836), p.2543-2580
Main Authors: Suiker, Akke S. J., de Borst, René
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c558t-49c6837c8cdfbeb62f239db7529cbbd597f622f02db8f7f3bec3b3ddcf34822b3
cites cdi_FETCH-LOGICAL-c558t-49c6837c8cdfbeb62f239db7529cbbd597f622f02db8f7f3bec3b3ddcf34822b3
container_end_page 2580
container_issue 1836
container_start_page 2543
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 363
creator Suiker, Akke S. J.
de Borst, René
description This article discusses the derivation of continuum models that can be used for modelling the inhomogeneous mechanical behaviour of granular assemblies. These so-called kinematically enhanced models are of the strain-gradient type and of the strain-gradient micro-polar type, and are derived by means of homogenizing the micro-structural interactions between discrete particles. By analysis of the body wave dispersion curves, the enhanced continuum models are compared to corresponding discrete lattice models. Accordingly, it can be examined up to which deformation level the continuum models are able to accurately describe the discrete particle behaviour. Further, the boundary conditions for the enhanced continuum models are formulated, and their stability is considered. It is demonstrated how to use the body wave dispersion relations for the assessment of stability.
doi_str_mv 10.1098/rsta.2005.1586
format article
fullrecord <record><control><sourceid>jstor_highw</sourceid><recordid>TN_cdi_highwire_royalsociety_roypta_363_1836_2543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30039749</jstor_id><sourcerecordid>30039749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-49c6837c8cdfbeb62f239db7529cbbd597f622f02db8f7f3bec3b3ddcf34822b3</originalsourceid><addsrcrecordid>eNp9ks1v1DAQxSMEoqVw5QbKiVsW25M4zo2qKlCpEhIUiZvlz10vSbzYDmj719fZrIoqRE-2NW9-b-bJRfEaoxVGHXsfYhIrglCzwg2jT4pTXLe4Ih0lT_MdaF01CH6cFC9i3CKEMW3I8-IEU1JDi9rT4upy3IhRGV0qPyY3TqIUoy61iyqYZMpepOSUiaX1oRy8Nn3vxnW5DmKcehFKEaMZZO9MfFk8s6KP5tXxPCu-f7y8ufhcXX_5dHVxfl2ppmGpqjtFGbSKKW2lkZRYAp2WbUM6JaVuutZSQiwiWjLbWpBGgQStlYWaESLhrHi3cHfB_5pMTHzIw-a5xGj8FDllLQECTRauFqEKPsZgLN8FN4iw5xjxOTw-h8fn8PgcXm54eyRPcjD6r_yYVhbAIgh-n1f0ypm051s_hTE__4_9-VjX128357-BgsMMKEcMcHZiGPit2y2oXOQuxsnwg-Qh_l-3N4vbNiYf7ncAhKBr6y7XPyz1jVtv_rhg-IOxDrT5K5gxHYwPlqSpgdup7_lO24zAjyL8fnec-r4Z7gAUA9No</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68723235</pqid></control><display><type>article</type><title>Enhanced continua and discrete lattices for modelling granular assemblies</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Suiker, Akke S. J. ; de Borst, René</creator><creatorcontrib>Suiker, Akke S. J. ; de Borst, René</creatorcontrib><description>This article discusses the derivation of continuum models that can be used for modelling the inhomogeneous mechanical behaviour of granular assemblies. These so-called kinematically enhanced models are of the strain-gradient type and of the strain-gradient micro-polar type, and are derived by means of homogenizing the micro-structural interactions between discrete particles. By analysis of the body wave dispersion curves, the enhanced continuum models are compared to corresponding discrete lattice models. Accordingly, it can be examined up to which deformation level the continuum models are able to accurately describe the discrete particle behaviour. Further, the boundary conditions for the enhanced continuum models are formulated, and their stability is considered. It is demonstrated how to use the body wave dispersion relations for the assessment of stability.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2005.1586</identifier><identifier>PMID: 16243707</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Continuum modeling ; Discrete Lattice Models ; Enhanced Continuum Models ; Granular Material ; Granular materials ; Harmonics ; Homogenization ; Kinematics ; Mathematical expressions ; Micro-Structure ; Rotation ; Stiffness ; Wave dispersion ; Wave Propagation ; Wavelengths</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2005-11, Vol.363 (1836), p.2543-2580</ispartof><rights>Copyright 2005 The Royal Society</rights><rights>2005 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-49c6837c8cdfbeb62f239db7529cbbd597f622f02db8f7f3bec3b3ddcf34822b3</citedby><cites>FETCH-LOGICAL-c558t-49c6837c8cdfbeb62f239db7529cbbd597f622f02db8f7f3bec3b3ddcf34822b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30039749$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30039749$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16243707$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Suiker, Akke S. J.</creatorcontrib><creatorcontrib>de Borst, René</creatorcontrib><title>Enhanced continua and discrete lattices for modelling granular assemblies</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><description>This article discusses the derivation of continuum models that can be used for modelling the inhomogeneous mechanical behaviour of granular assemblies. These so-called kinematically enhanced models are of the strain-gradient type and of the strain-gradient micro-polar type, and are derived by means of homogenizing the micro-structural interactions between discrete particles. By analysis of the body wave dispersion curves, the enhanced continuum models are compared to corresponding discrete lattice models. Accordingly, it can be examined up to which deformation level the continuum models are able to accurately describe the discrete particle behaviour. Further, the boundary conditions for the enhanced continuum models are formulated, and their stability is considered. It is demonstrated how to use the body wave dispersion relations for the assessment of stability.</description><subject>Continuum modeling</subject><subject>Discrete Lattice Models</subject><subject>Enhanced Continuum Models</subject><subject>Granular Material</subject><subject>Granular materials</subject><subject>Harmonics</subject><subject>Homogenization</subject><subject>Kinematics</subject><subject>Mathematical expressions</subject><subject>Micro-Structure</subject><subject>Rotation</subject><subject>Stiffness</subject><subject>Wave dispersion</subject><subject>Wave Propagation</subject><subject>Wavelengths</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9ks1v1DAQxSMEoqVw5QbKiVsW25M4zo2qKlCpEhIUiZvlz10vSbzYDmj719fZrIoqRE-2NW9-b-bJRfEaoxVGHXsfYhIrglCzwg2jT4pTXLe4Ih0lT_MdaF01CH6cFC9i3CKEMW3I8-IEU1JDi9rT4upy3IhRGV0qPyY3TqIUoy61iyqYZMpepOSUiaX1oRy8Nn3vxnW5DmKcehFKEaMZZO9MfFk8s6KP5tXxPCu-f7y8ufhcXX_5dHVxfl2ppmGpqjtFGbSKKW2lkZRYAp2WbUM6JaVuutZSQiwiWjLbWpBGgQStlYWaESLhrHi3cHfB_5pMTHzIw-a5xGj8FDllLQECTRauFqEKPsZgLN8FN4iw5xjxOTw-h8fn8PgcXm54eyRPcjD6r_yYVhbAIgh-n1f0ypm051s_hTE__4_9-VjX128357-BgsMMKEcMcHZiGPit2y2oXOQuxsnwg-Qh_l-3N4vbNiYf7ncAhKBr6y7XPyz1jVtv_rhg-IOxDrT5K5gxHYwPlqSpgdup7_lO24zAjyL8fnec-r4Z7gAUA9No</recordid><startdate>20051115</startdate><enddate>20051115</enddate><creator>Suiker, Akke S. J.</creator><creator>de Borst, René</creator><general>The Royal Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20051115</creationdate><title>Enhanced continua and discrete lattices for modelling granular assemblies</title><author>Suiker, Akke S. J. ; de Borst, René</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-49c6837c8cdfbeb62f239db7529cbbd597f622f02db8f7f3bec3b3ddcf34822b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Continuum modeling</topic><topic>Discrete Lattice Models</topic><topic>Enhanced Continuum Models</topic><topic>Granular Material</topic><topic>Granular materials</topic><topic>Harmonics</topic><topic>Homogenization</topic><topic>Kinematics</topic><topic>Mathematical expressions</topic><topic>Micro-Structure</topic><topic>Rotation</topic><topic>Stiffness</topic><topic>Wave dispersion</topic><topic>Wave Propagation</topic><topic>Wavelengths</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suiker, Akke S. J.</creatorcontrib><creatorcontrib>de Borst, René</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suiker, Akke S. J.</au><au>de Borst, René</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced continua and discrete lattices for modelling granular assemblies</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><addtitle>Philos Trans A Math Phys Eng Sci</addtitle><date>2005-11-15</date><risdate>2005</risdate><volume>363</volume><issue>1836</issue><spage>2543</spage><epage>2580</epage><pages>2543-2580</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>This article discusses the derivation of continuum models that can be used for modelling the inhomogeneous mechanical behaviour of granular assemblies. These so-called kinematically enhanced models are of the strain-gradient type and of the strain-gradient micro-polar type, and are derived by means of homogenizing the micro-structural interactions between discrete particles. By analysis of the body wave dispersion curves, the enhanced continuum models are compared to corresponding discrete lattice models. Accordingly, it can be examined up to which deformation level the continuum models are able to accurately describe the discrete particle behaviour. Further, the boundary conditions for the enhanced continuum models are formulated, and their stability is considered. It is demonstrated how to use the body wave dispersion relations for the assessment of stability.</abstract><cop>London</cop><pub>The Royal Society</pub><pmid>16243707</pmid><doi>10.1098/rsta.2005.1586</doi><tpages>38</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2005-11, Vol.363 (1836), p.2543-2580
issn 1364-503X
1471-2962
language eng
recordid cdi_highwire_royalsociety_roypta_363_1836_2543
source JSTOR Archival Journals and Primary Sources Collection; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
subjects Continuum modeling
Discrete Lattice Models
Enhanced Continuum Models
Granular Material
Granular materials
Harmonics
Homogenization
Kinematics
Mathematical expressions
Micro-Structure
Rotation
Stiffness
Wave dispersion
Wave Propagation
Wavelengths
title Enhanced continua and discrete lattices for modelling granular assemblies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A59%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20continua%20and%20discrete%20lattices%20for%20modelling%20granular%20assemblies&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Suiker,%20Akke%20S.%20J.&rft.date=2005-11-15&rft.volume=363&rft.issue=1836&rft.spage=2543&rft.epage=2580&rft.pages=2543-2580&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2005.1586&rft_dat=%3Cjstor_highw%3E30039749%3C/jstor_highw%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c558t-49c6837c8cdfbeb62f239db7529cbbd597f622f02db8f7f3bec3b3ddcf34822b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68723235&rft_id=info:pmid/16243707&rft_jstor_id=30039749&rfr_iscdi=true