Loading…

Geometric phases and criticality in spin systems

A general formalism of the relation between geometric phases produced by circularly evolving interacting spin systems and their criticality behaviour is presented. This opens up the way for the use of geometric phases as a tool to probe regions of criticality without having to undergo a quantum phas...

Full description

Saved in:
Bibliographic Details
Published in:Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2006-12, Vol.364 (1849), p.3463-3476
Main Authors: Pachos, Jiannis K, Carollo, Angelo C.M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c496t-41a6a329df1e5f001c6dfe551d13cd281b2248a3907a366a6162c4f61e6808173
cites cdi_FETCH-LOGICAL-c496t-41a6a329df1e5f001c6dfe551d13cd281b2248a3907a366a6162c4f61e6808173
container_end_page 3476
container_issue 1849
container_start_page 3463
container_title Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences
container_volume 364
creator Pachos, Jiannis K
Carollo, Angelo C.M
description A general formalism of the relation between geometric phases produced by circularly evolving interacting spin systems and their criticality behaviour is presented. This opens up the way for the use of geometric phases as a tool to probe regions of criticality without having to undergo a quantum phase transition. As a concrete example, a spin-1/2 chain with XY interactions is considered and the corresponding geometric phases are analysed. Finally, a generalization of these results to the case of an arbitrary spin system is presented.
doi_str_mv 10.1098/rsta.2006.1894
format article
fullrecord <record><control><sourceid>jstor_highw</sourceid><recordid>TN_cdi_highwire_royalsociety_roypta_364_1849_3463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25190415</jstor_id><sourcerecordid>25190415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-41a6a329df1e5f001c6dfe551d13cd281b2248a3907a366a6162c4f61e6808173</originalsourceid><addsrcrecordid>eNp9kc2P1SAUxYnROOPo1p2mK3d9coHelp3mRZ8mk7jwI8YNYSj18WxLBRrtfy9NX8bMQjfAzf2dc-FAyFOgO6CyeRli0jtGKe6gkeIeuQRRQ8kksvv5zFGUFeVfL8ijGE-UAmDFHpILqKmkoqaXhB6sH2wKzhTTUUcbCz22hQkuOaN7l5bCjUWc1mWJyQ7xMXnQ6T7aJ-f9inx---bT_l15_eHwfv_6ujRCYioFaNScybYDW3V5ssG2s1UFLXDTsgZuGBON5pLWmiNqBGRGdAgWG9pAza_Ii813Cv7nbGNSg4vG9r0erZ-jwgYYF_UK7jbQBB9jsJ2aght0WBRQtWak1ozUmpFaM8qC52fn-Waw7V_8HEoG-AYEv-QneuNsWtTJz2HM5b9tn22qU0w-3LqyCrIrVLlfbn2Xc_x929fhh8Ka15X60giFB7oX3-CjkpmHjT-678dfLlh15zq5mPL8_MN5vJCKC-RZ8-q_mvXGxo_JjumuUnVz36up7fgfL82zsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68123477</pqid></control><display><type>article</type><title>Geometric phases and criticality in spin systems</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read &amp; Publish Transitional Agreement 2025 (reading list)</source><creator>Pachos, Jiannis K ; Carollo, Angelo C.M</creator><creatorcontrib>Pachos, Jiannis K ; Carollo, Angelo C.M</creatorcontrib><description>A general formalism of the relation between geometric phases produced by circularly evolving interacting spin systems and their criticality behaviour is presented. This opens up the way for the use of geometric phases as a tool to probe regions of criticality without having to undergo a quantum phase transition. As a concrete example, a spin-1/2 chain with XY interactions is considered and the corresponding geometric phases are analysed. Finally, a generalization of these results to the case of an arbitrary spin system is presented.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2006.1894</identifier><identifier>PMID: 17090470</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Atoms ; Berry Phases ; Critical Phenomena ; Critical points ; Eigenvalues ; Energy gaps ; Expected values ; General Physics ; Geometric topology ; Ground state ; Magnetic fields ; Mathematical vectors ; Topology ; XY model</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2006-12, Vol.364 (1849), p.3463-3476</ispartof><rights>Copyright 2006 The Royal Society</rights><rights>2006 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-41a6a329df1e5f001c6dfe551d13cd281b2248a3907a366a6162c4f61e6808173</citedby><cites>FETCH-LOGICAL-c496t-41a6a329df1e5f001c6dfe551d13cd281b2248a3907a366a6162c4f61e6808173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25190415$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25190415$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17090470$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pachos, Jiannis K</creatorcontrib><creatorcontrib>Carollo, Angelo C.M</creatorcontrib><title>Geometric phases and criticality in spin systems</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>PHIL TRANS R SOC A</addtitle><description>A general formalism of the relation between geometric phases produced by circularly evolving interacting spin systems and their criticality behaviour is presented. This opens up the way for the use of geometric phases as a tool to probe regions of criticality without having to undergo a quantum phase transition. As a concrete example, a spin-1/2 chain with XY interactions is considered and the corresponding geometric phases are analysed. Finally, a generalization of these results to the case of an arbitrary spin system is presented.</description><subject>Atoms</subject><subject>Berry Phases</subject><subject>Critical Phenomena</subject><subject>Critical points</subject><subject>Eigenvalues</subject><subject>Energy gaps</subject><subject>Expected values</subject><subject>General Physics</subject><subject>Geometric topology</subject><subject>Ground state</subject><subject>Magnetic fields</subject><subject>Mathematical vectors</subject><subject>Topology</subject><subject>XY model</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kc2P1SAUxYnROOPo1p2mK3d9coHelp3mRZ8mk7jwI8YNYSj18WxLBRrtfy9NX8bMQjfAzf2dc-FAyFOgO6CyeRli0jtGKe6gkeIeuQRRQ8kksvv5zFGUFeVfL8ijGE-UAmDFHpILqKmkoqaXhB6sH2wKzhTTUUcbCz22hQkuOaN7l5bCjUWc1mWJyQ7xMXnQ6T7aJ-f9inx---bT_l15_eHwfv_6ujRCYioFaNScybYDW3V5ssG2s1UFLXDTsgZuGBON5pLWmiNqBGRGdAgWG9pAza_Ii813Cv7nbGNSg4vG9r0erZ-jwgYYF_UK7jbQBB9jsJ2aght0WBRQtWak1ozUmpFaM8qC52fn-Waw7V_8HEoG-AYEv-QneuNsWtTJz2HM5b9tn22qU0w-3LqyCrIrVLlfbn2Xc_x929fhh8Ka15X60giFB7oX3-CjkpmHjT-678dfLlh15zq5mPL8_MN5vJCKC-RZ8-q_mvXGxo_JjumuUnVz36up7fgfL82zsg</recordid><startdate>20061215</startdate><enddate>20061215</enddate><creator>Pachos, Jiannis K</creator><creator>Carollo, Angelo C.M</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20061215</creationdate><title>Geometric phases and criticality in spin systems</title><author>Pachos, Jiannis K ; Carollo, Angelo C.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-41a6a329df1e5f001c6dfe551d13cd281b2248a3907a366a6162c4f61e6808173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Atoms</topic><topic>Berry Phases</topic><topic>Critical Phenomena</topic><topic>Critical points</topic><topic>Eigenvalues</topic><topic>Energy gaps</topic><topic>Expected values</topic><topic>General Physics</topic><topic>Geometric topology</topic><topic>Ground state</topic><topic>Magnetic fields</topic><topic>Mathematical vectors</topic><topic>Topology</topic><topic>XY model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pachos, Jiannis K</creatorcontrib><creatorcontrib>Carollo, Angelo C.M</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pachos, Jiannis K</au><au>Carollo, Angelo C.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric phases and criticality in spin systems</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><addtitle>PHIL TRANS R SOC A</addtitle><date>2006-12-15</date><risdate>2006</risdate><volume>364</volume><issue>1849</issue><spage>3463</spage><epage>3476</epage><pages>3463-3476</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>A general formalism of the relation between geometric phases produced by circularly evolving interacting spin systems and their criticality behaviour is presented. This opens up the way for the use of geometric phases as a tool to probe regions of criticality without having to undergo a quantum phase transition. As a concrete example, a spin-1/2 chain with XY interactions is considered and the corresponding geometric phases are analysed. Finally, a generalization of these results to the case of an arbitrary spin system is presented.</abstract><cop>London</cop><pub>The Royal Society</pub><pmid>17090470</pmid><doi>10.1098/rsta.2006.1894</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1364-503X
ispartof Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2006-12, Vol.364 (1849), p.3463-3476
issn 1364-503X
1471-2962
language eng
recordid cdi_highwire_royalsociety_roypta_364_1849_3463
source JSTOR Archival Journals and Primary Sources Collection; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)
subjects Atoms
Berry Phases
Critical Phenomena
Critical points
Eigenvalues
Energy gaps
Expected values
General Physics
Geometric topology
Ground state
Magnetic fields
Mathematical vectors
Topology
XY model
title Geometric phases and criticality in spin systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A19%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20phases%20and%20criticality%20in%20spin%20systems&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Pachos,%20Jiannis%20K&rft.date=2006-12-15&rft.volume=364&rft.issue=1849&rft.spage=3463&rft.epage=3476&rft.pages=3463-3476&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2006.1894&rft_dat=%3Cjstor_highw%3E25190415%3C/jstor_highw%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-41a6a329df1e5f001c6dfe551d13cd281b2248a3907a366a6162c4f61e6808173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68123477&rft_id=info:pmid/17090470&rft_jstor_id=25190415&rfr_iscdi=true