Loading…
Geometric phases and criticality in spin systems
A general formalism of the relation between geometric phases produced by circularly evolving interacting spin systems and their criticality behaviour is presented. This opens up the way for the use of geometric phases as a tool to probe regions of criticality without having to undergo a quantum phas...
Saved in:
Published in: | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences physical, and engineering sciences, 2006-12, Vol.364 (1849), p.3463-3476 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c496t-41a6a329df1e5f001c6dfe551d13cd281b2248a3907a366a6162c4f61e6808173 |
---|---|
cites | cdi_FETCH-LOGICAL-c496t-41a6a329df1e5f001c6dfe551d13cd281b2248a3907a366a6162c4f61e6808173 |
container_end_page | 3476 |
container_issue | 1849 |
container_start_page | 3463 |
container_title | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences |
container_volume | 364 |
creator | Pachos, Jiannis K Carollo, Angelo C.M |
description | A general formalism of the relation between geometric phases produced by circularly evolving interacting spin systems and their criticality behaviour is presented. This opens up the way for the use of geometric phases as a tool to probe regions of criticality without having to undergo a quantum phase transition. As a concrete example, a spin-1/2 chain with XY interactions is considered and the corresponding geometric phases are analysed. Finally, a generalization of these results to the case of an arbitrary spin system is presented. |
doi_str_mv | 10.1098/rsta.2006.1894 |
format | article |
fullrecord | <record><control><sourceid>jstor_highw</sourceid><recordid>TN_cdi_highwire_royalsociety_roypta_364_1849_3463</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>25190415</jstor_id><sourcerecordid>25190415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c496t-41a6a329df1e5f001c6dfe551d13cd281b2248a3907a366a6162c4f61e6808173</originalsourceid><addsrcrecordid>eNp9kc2P1SAUxYnROOPo1p2mK3d9coHelp3mRZ8mk7jwI8YNYSj18WxLBRrtfy9NX8bMQjfAzf2dc-FAyFOgO6CyeRli0jtGKe6gkeIeuQRRQ8kksvv5zFGUFeVfL8ijGE-UAmDFHpILqKmkoqaXhB6sH2wKzhTTUUcbCz22hQkuOaN7l5bCjUWc1mWJyQ7xMXnQ6T7aJ-f9inx---bT_l15_eHwfv_6ujRCYioFaNScybYDW3V5ssG2s1UFLXDTsgZuGBON5pLWmiNqBGRGdAgWG9pAza_Ii813Cv7nbGNSg4vG9r0erZ-jwgYYF_UK7jbQBB9jsJ2aght0WBRQtWak1ozUmpFaM8qC52fn-Waw7V_8HEoG-AYEv-QneuNsWtTJz2HM5b9tn22qU0w-3LqyCrIrVLlfbn2Xc_x929fhh8Ka15X60giFB7oX3-CjkpmHjT-678dfLlh15zq5mPL8_MN5vJCKC-RZ8-q_mvXGxo_JjumuUnVz36up7fgfL82zsg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68123477</pqid></control><display><type>article</type><title>Geometric phases and criticality in spin systems</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list)</source><creator>Pachos, Jiannis K ; Carollo, Angelo C.M</creator><creatorcontrib>Pachos, Jiannis K ; Carollo, Angelo C.M</creatorcontrib><description>A general formalism of the relation between geometric phases produced by circularly evolving interacting spin systems and their criticality behaviour is presented. This opens up the way for the use of geometric phases as a tool to probe regions of criticality without having to undergo a quantum phase transition. As a concrete example, a spin-1/2 chain with XY interactions is considered and the corresponding geometric phases are analysed. Finally, a generalization of these results to the case of an arbitrary spin system is presented.</description><identifier>ISSN: 1364-503X</identifier><identifier>EISSN: 1471-2962</identifier><identifier>DOI: 10.1098/rsta.2006.1894</identifier><identifier>PMID: 17090470</identifier><language>eng</language><publisher>London: The Royal Society</publisher><subject>Atoms ; Berry Phases ; Critical Phenomena ; Critical points ; Eigenvalues ; Energy gaps ; Expected values ; General Physics ; Geometric topology ; Ground state ; Magnetic fields ; Mathematical vectors ; Topology ; XY model</subject><ispartof>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2006-12, Vol.364 (1849), p.3463-3476</ispartof><rights>Copyright 2006 The Royal Society</rights><rights>2006 The Royal Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c496t-41a6a329df1e5f001c6dfe551d13cd281b2248a3907a366a6162c4f61e6808173</citedby><cites>FETCH-LOGICAL-c496t-41a6a329df1e5f001c6dfe551d13cd281b2248a3907a366a6162c4f61e6808173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/25190415$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/25190415$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17090470$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pachos, Jiannis K</creatorcontrib><creatorcontrib>Carollo, Angelo C.M</creatorcontrib><title>Geometric phases and criticality in spin systems</title><title>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</title><addtitle>PHIL TRANS R SOC A</addtitle><description>A general formalism of the relation between geometric phases produced by circularly evolving interacting spin systems and their criticality behaviour is presented. This opens up the way for the use of geometric phases as a tool to probe regions of criticality without having to undergo a quantum phase transition. As a concrete example, a spin-1/2 chain with XY interactions is considered and the corresponding geometric phases are analysed. Finally, a generalization of these results to the case of an arbitrary spin system is presented.</description><subject>Atoms</subject><subject>Berry Phases</subject><subject>Critical Phenomena</subject><subject>Critical points</subject><subject>Eigenvalues</subject><subject>Energy gaps</subject><subject>Expected values</subject><subject>General Physics</subject><subject>Geometric topology</subject><subject>Ground state</subject><subject>Magnetic fields</subject><subject>Mathematical vectors</subject><subject>Topology</subject><subject>XY model</subject><issn>1364-503X</issn><issn>1471-2962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kc2P1SAUxYnROOPo1p2mK3d9coHelp3mRZ8mk7jwI8YNYSj18WxLBRrtfy9NX8bMQjfAzf2dc-FAyFOgO6CyeRli0jtGKe6gkeIeuQRRQ8kksvv5zFGUFeVfL8ijGE-UAmDFHpILqKmkoqaXhB6sH2wKzhTTUUcbCz22hQkuOaN7l5bCjUWc1mWJyQ7xMXnQ6T7aJ-f9inx---bT_l15_eHwfv_6ujRCYioFaNScybYDW3V5ssG2s1UFLXDTsgZuGBON5pLWmiNqBGRGdAgWG9pAza_Ii813Cv7nbGNSg4vG9r0erZ-jwgYYF_UK7jbQBB9jsJ2aght0WBRQtWak1ozUmpFaM8qC52fn-Waw7V_8HEoG-AYEv-QneuNsWtTJz2HM5b9tn22qU0w-3LqyCrIrVLlfbn2Xc_x929fhh8Ka15X60giFB7oX3-CjkpmHjT-678dfLlh15zq5mPL8_MN5vJCKC-RZ8-q_mvXGxo_JjumuUnVz36up7fgfL82zsg</recordid><startdate>20061215</startdate><enddate>20061215</enddate><creator>Pachos, Jiannis K</creator><creator>Carollo, Angelo C.M</creator><general>The Royal Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20061215</creationdate><title>Geometric phases and criticality in spin systems</title><author>Pachos, Jiannis K ; Carollo, Angelo C.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c496t-41a6a329df1e5f001c6dfe551d13cd281b2248a3907a366a6162c4f61e6808173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Atoms</topic><topic>Berry Phases</topic><topic>Critical Phenomena</topic><topic>Critical points</topic><topic>Eigenvalues</topic><topic>Energy gaps</topic><topic>Expected values</topic><topic>General Physics</topic><topic>Geometric topology</topic><topic>Ground state</topic><topic>Magnetic fields</topic><topic>Mathematical vectors</topic><topic>Topology</topic><topic>XY model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pachos, Jiannis K</creatorcontrib><creatorcontrib>Carollo, Angelo C.M</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pachos, Jiannis K</au><au>Carollo, Angelo C.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Geometric phases and criticality in spin systems</atitle><jtitle>Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences</jtitle><addtitle>PHIL TRANS R SOC A</addtitle><date>2006-12-15</date><risdate>2006</risdate><volume>364</volume><issue>1849</issue><spage>3463</spage><epage>3476</epage><pages>3463-3476</pages><issn>1364-503X</issn><eissn>1471-2962</eissn><abstract>A general formalism of the relation between geometric phases produced by circularly evolving interacting spin systems and their criticality behaviour is presented. This opens up the way for the use of geometric phases as a tool to probe regions of criticality without having to undergo a quantum phase transition. As a concrete example, a spin-1/2 chain with XY interactions is considered and the corresponding geometric phases are analysed. Finally, a generalization of these results to the case of an arbitrary spin system is presented.</abstract><cop>London</cop><pub>The Royal Society</pub><pmid>17090470</pmid><doi>10.1098/rsta.2006.1894</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1364-503X |
ispartof | Philosophical transactions of the Royal Society of London. Series A: Mathematical, physical, and engineering sciences, 2006-12, Vol.364 (1849), p.3463-3476 |
issn | 1364-503X 1471-2962 |
language | eng |
recordid | cdi_highwire_royalsociety_roypta_364_1849_3463 |
source | JSTOR Archival Journals and Primary Sources Collection; Royal Society Publishing Jisc Collections Royal Society Journals Read & Publish Transitional Agreement 2025 (reading list) |
subjects | Atoms Berry Phases Critical Phenomena Critical points Eigenvalues Energy gaps Expected values General Physics Geometric topology Ground state Magnetic fields Mathematical vectors Topology XY model |
title | Geometric phases and criticality in spin systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A19%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Geometric%20phases%20and%20criticality%20in%20spin%20systems&rft.jtitle=Philosophical%20transactions%20of%20the%20Royal%20Society%20of%20London.%20Series%20A:%20Mathematical,%20physical,%20and%20engineering%20sciences&rft.au=Pachos,%20Jiannis%20K&rft.date=2006-12-15&rft.volume=364&rft.issue=1849&rft.spage=3463&rft.epage=3476&rft.pages=3463-3476&rft.issn=1364-503X&rft.eissn=1471-2962&rft_id=info:doi/10.1098/rsta.2006.1894&rft_dat=%3Cjstor_highw%3E25190415%3C/jstor_highw%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c496t-41a6a329df1e5f001c6dfe551d13cd281b2248a3907a366a6162c4f61e6808173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=68123477&rft_id=info:pmid/17090470&rft_jstor_id=25190415&rfr_iscdi=true |