Loading…

Robust H_∞ Filtering of 2D Roesser Discrete Systems: A Polynomial Approach

The problem of robust H∞ filtering is investigated for the class of uncertain two-dimensional (2D) discrete systems described by a Roesser state-space model. The main contribution is a systematic procedure for generating conditions for the existence of a 2D discrete filter such that, for all admissi...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical Problems in Engineering 2012-01, Vol.2012 (2012), p.400-414-323
Main Authors: Tadeo, Fernando, Alvarez, Teresa, Hmamed, A., Souissi, M.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a364t-8228e1b2104e9373c022f62de47c1f43ba9375e5ed30cadae1768d16a749bfbf3
cites cdi_FETCH-LOGICAL-a364t-8228e1b2104e9373c022f62de47c1f43ba9375e5ed30cadae1768d16a749bfbf3
container_end_page 414-323
container_issue 2012
container_start_page 400
container_title Mathematical Problems in Engineering
container_volume 2012
creator Tadeo, Fernando
Alvarez, Teresa
Hmamed, A.
Souissi, M.
description The problem of robust H∞ filtering is investigated for the class of uncertain two-dimensional (2D) discrete systems described by a Roesser state-space model. The main contribution is a systematic procedure for generating conditions for the existence of a 2D discrete filter such that, for all admissible uncertainties, the error system is asymptotically stable, and the H∞ norm of the transfer function from the noise signal to the estimation error is below a prespecified level. These conditions are expressed as parameter-dependent linear matrix inequalities. Using homogeneous polynomially parameter-dependent filters of arbitrary degree on the uncertain parameters, the proposed method extends previous results in the quadratic framework and the linearly parameter-dependent framework, thus reducing its conservatism. Performance of the proposed method, in comparison with that of existing methods, is illustrated by two examples.
doi_str_mv 10.1155/2012/521675
format article
fullrecord <record><control><sourceid>airiti_cross</sourceid><recordid>TN_cdi_hindawi_primary_10_1155_2012_521675</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20161117002_201212_201703210003_201703210003_400_414_323</airiti_id><sourcerecordid>P20161117002_201212_201703210003_201703210003_400_414_323</sourcerecordid><originalsourceid>FETCH-LOGICAL-a364t-8228e1b2104e9373c022f62de47c1f43ba9375e5ed30cadae1768d16a749bfbf3</originalsourceid><addsrcrecordid>eNqFkM1KAzEURgdRsFZX7iVrZWxufiZTd8VaKxQsVcFdyMwkNqWdlGSK9A18Ch_OJzHtuNCVq-_ey-GDe5LkHPA1AOc9goH0OIFM8IOkAzyjKQcmDuOMCUuB0Nfj5CSEBcYEOOSdZDJzxSY0aCy_Pj7RyC4b7W39hpxBZIhmToegPRraUHrdaPS0DY1ehRs0QFO33NZuZdUSDdZr71Q5P02OjFoGffaT3eRldPd8O04nj_cPt4NJqmjGmjQnJNdQEMBM96mgJSbEZKTSTJRgGC1UvHLNdUVxqSqlQWR5BZkSrF-YwtBuctX2lt6F4LWRa29Xym8lYLkTIXciZCsi0pctPbd1pd7tP_BFC-uIaKN-waSfAY7AtAWU9baxcuE2vo7PymmsyQBARLf7StiHwDQ-ijH9uzCMJQMmKaH0G2COfBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Robust H_∞ Filtering of 2D Roesser Discrete Systems: A Polynomial Approach</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>IngentaConnect Journals</source><source>Wiley Open Access</source><creator>Tadeo, Fernando ; Alvarez, Teresa ; Hmamed, A. ; Souissi, M.</creator><contributor>Rodellar, J.</contributor><creatorcontrib>Tadeo, Fernando ; Alvarez, Teresa ; Hmamed, A. ; Souissi, M. ; Rodellar, J.</creatorcontrib><description>The problem of robust H∞ filtering is investigated for the class of uncertain two-dimensional (2D) discrete systems described by a Roesser state-space model. The main contribution is a systematic procedure for generating conditions for the existence of a 2D discrete filter such that, for all admissible uncertainties, the error system is asymptotically stable, and the H∞ norm of the transfer function from the noise signal to the estimation error is below a prespecified level. These conditions are expressed as parameter-dependent linear matrix inequalities. Using homogeneous polynomially parameter-dependent filters of arbitrary degree on the uncertain parameters, the proposed method extends previous results in the quadratic framework and the linearly parameter-dependent framework, thus reducing its conservatism. Performance of the proposed method, in comparison with that of existing methods, is illustrated by two examples.</description><identifier>ISSN: 1024-123X</identifier><identifier>EISSN: 1563-5147</identifier><identifier>DOI: 10.1155/2012/521675</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Limiteds</publisher><ispartof>Mathematical Problems in Engineering, 2012-01, Vol.2012 (2012), p.400-414-323</ispartof><rights>Copyright © 2012 Chakir El-Kasri et al.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a364t-8228e1b2104e9373c022f62de47c1f43ba9375e5ed30cadae1768d16a749bfbf3</citedby><cites>FETCH-LOGICAL-a364t-8228e1b2104e9373c022f62de47c1f43ba9375e5ed30cadae1768d16a749bfbf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><contributor>Rodellar, J.</contributor><creatorcontrib>Tadeo, Fernando</creatorcontrib><creatorcontrib>Alvarez, Teresa</creatorcontrib><creatorcontrib>Hmamed, A.</creatorcontrib><creatorcontrib>Souissi, M.</creatorcontrib><title>Robust H_∞ Filtering of 2D Roesser Discrete Systems: A Polynomial Approach</title><title>Mathematical Problems in Engineering</title><description>The problem of robust H∞ filtering is investigated for the class of uncertain two-dimensional (2D) discrete systems described by a Roesser state-space model. The main contribution is a systematic procedure for generating conditions for the existence of a 2D discrete filter such that, for all admissible uncertainties, the error system is asymptotically stable, and the H∞ norm of the transfer function from the noise signal to the estimation error is below a prespecified level. These conditions are expressed as parameter-dependent linear matrix inequalities. Using homogeneous polynomially parameter-dependent filters of arbitrary degree on the uncertain parameters, the proposed method extends previous results in the quadratic framework and the linearly parameter-dependent framework, thus reducing its conservatism. Performance of the proposed method, in comparison with that of existing methods, is illustrated by two examples.</description><issn>1024-123X</issn><issn>1563-5147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkM1KAzEURgdRsFZX7iVrZWxufiZTd8VaKxQsVcFdyMwkNqWdlGSK9A18Ch_OJzHtuNCVq-_ey-GDe5LkHPA1AOc9goH0OIFM8IOkAzyjKQcmDuOMCUuB0Nfj5CSEBcYEOOSdZDJzxSY0aCy_Pj7RyC4b7W39hpxBZIhmToegPRraUHrdaPS0DY1ehRs0QFO33NZuZdUSDdZr71Q5P02OjFoGffaT3eRldPd8O04nj_cPt4NJqmjGmjQnJNdQEMBM96mgJSbEZKTSTJRgGC1UvHLNdUVxqSqlQWR5BZkSrF-YwtBuctX2lt6F4LWRa29Xym8lYLkTIXciZCsi0pctPbd1pd7tP_BFC-uIaKN-waSfAY7AtAWU9baxcuE2vo7PymmsyQBARLf7StiHwDQ-ijH9uzCMJQMmKaH0G2COfBg</recordid><startdate>20120101</startdate><enddate>20120101</enddate><creator>Tadeo, Fernando</creator><creator>Alvarez, Teresa</creator><creator>Hmamed, A.</creator><creator>Souissi, M.</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><scope>188</scope><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20120101</creationdate><title>Robust H_∞ Filtering of 2D Roesser Discrete Systems: A Polynomial Approach</title><author>Tadeo, Fernando ; Alvarez, Teresa ; Hmamed, A. ; Souissi, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a364t-8228e1b2104e9373c022f62de47c1f43ba9375e5ed30cadae1768d16a749bfbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tadeo, Fernando</creatorcontrib><creatorcontrib>Alvarez, Teresa</creatorcontrib><creatorcontrib>Hmamed, A.</creatorcontrib><creatorcontrib>Souissi, M.</creatorcontrib><collection>Airiti Library</collection><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><jtitle>Mathematical Problems in Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tadeo, Fernando</au><au>Alvarez, Teresa</au><au>Hmamed, A.</au><au>Souissi, M.</au><au>Rodellar, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust H_∞ Filtering of 2D Roesser Discrete Systems: A Polynomial Approach</atitle><jtitle>Mathematical Problems in Engineering</jtitle><date>2012-01-01</date><risdate>2012</risdate><volume>2012</volume><issue>2012</issue><spage>400</spage><epage>414-323</epage><pages>400-414-323</pages><issn>1024-123X</issn><eissn>1563-5147</eissn><abstract>The problem of robust H∞ filtering is investigated for the class of uncertain two-dimensional (2D) discrete systems described by a Roesser state-space model. The main contribution is a systematic procedure for generating conditions for the existence of a 2D discrete filter such that, for all admissible uncertainties, the error system is asymptotically stable, and the H∞ norm of the transfer function from the noise signal to the estimation error is below a prespecified level. These conditions are expressed as parameter-dependent linear matrix inequalities. Using homogeneous polynomially parameter-dependent filters of arbitrary degree on the uncertain parameters, the proposed method extends previous results in the quadratic framework and the linearly parameter-dependent framework, thus reducing its conservatism. Performance of the proposed method, in comparison with that of existing methods, is illustrated by two examples.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Limiteds</pub><doi>10.1155/2012/521675</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1024-123X
ispartof Mathematical Problems in Engineering, 2012-01, Vol.2012 (2012), p.400-414-323
issn 1024-123X
1563-5147
language eng
recordid cdi_hindawi_primary_10_1155_2012_521675
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); IngentaConnect Journals; Wiley Open Access
title Robust H_∞ Filtering of 2D Roesser Discrete Systems: A Polynomial Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T12%3A18%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-airiti_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20H_%E2%88%9E%20Filtering%20of%202D%20Roesser%20Discrete%20Systems:%20A%20Polynomial%20Approach&rft.jtitle=Mathematical%20Problems%20in%20Engineering&rft.au=Tadeo,%20Fernando&rft.date=2012-01-01&rft.volume=2012&rft.issue=2012&rft.spage=400&rft.epage=414-323&rft.pages=400-414-323&rft.issn=1024-123X&rft.eissn=1563-5147&rft_id=info:doi/10.1155/2012/521675&rft_dat=%3Cairiti_cross%3EP20161117002_201212_201703210003_201703210003_400_414_323%3C/airiti_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a364t-8228e1b2104e9373c022f62de47c1f43ba9375e5ed30cadae1768d16a749bfbf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_airiti_id=P20161117002_201212_201703210003_201703210003_400_414_323&rfr_iscdi=true