Loading…

Use of Graph Invariants in Quantitative Structure-Activity Relationship Studies

This chapter reviews results of research carried out by Basak and collaborators during the past four decades or so in the development of novel mathematical chemodescriptors and their applications in quantitative structure-activity relationship (QSAR) studies related to the prediction of toxicities a...

Full description

Saved in:
Bibliographic Details
Published in:Croatica chemica acta 2016-01, Vol.89 (4), p.1
Main Author: Basak, Subhash C.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-ae306d780f54b11eaace35a390bc313329a6eedfae2e09c2fa1456d95ae4cb0f3
cites
container_end_page
container_issue 4
container_start_page 1
container_title Croatica chemica acta
container_volume 89
creator Basak, Subhash C.
description This chapter reviews results of research carried out by Basak and collaborators during the past four decades or so in the development of novel mathematical chemodescriptors and their applications in quantitative structure-activity relationship (QSAR) studies related to the prediction of toxicities and bioactivities of chemicals. For chemodescriptors based QSAR studies, we have used graph theoretical, three dimensional (3-D), and quantum chemical indices. The graph theoretic chemodescriptors fall into two major categories: (a) Numerical invariants defined on simple molecular graphs representing only the adjacency and distance relationship of atoms and bonds; such invariants are called topostructural (TS) indices; (b) Topological indices derived from weighted molecular graphs, called topochemical (TC) indices. Collectively, the TS and TC descriptors are known as topological indices (TIs). The set of independent variables used for modeling also includes a group of threedimensional (3-D) molecular descriptors. Semi-empirical and various levels of ab initio quantum chemical indices have also been used for hierarchical QSAR (HiQSAR) modeling. Results indicate that in many cases of property / activity / toxicity analyzed by us, a TS + TC combination explains most of the variance in the data.
doi_str_mv 10.5562/cca3029
format article
fullrecord <record><control><sourceid>gale_hrcak</sourceid><recordid>TN_cdi_hrcak_primary_oai_hrcak_srce_hr_173872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A491087550</galeid><sourcerecordid>A491087550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-ae306d780f54b11eaace35a390bc313329a6eedfae2e09c2fa1456d95ae4cb0f3</originalsourceid><addsrcrecordid>eNo9UdtKAzEQDaJgreIvLPjg09Zkk-zlsRSthYJ4KfgWptmJTW131yRb6N8b2SLzMMO5DAcOIbeMTqTMswetgdOsOiMjxrlIBSs-z8mIUsZSlgt-Sa6831KaSSHLEXlZeUxak8wddJtk0RzAWWiCT2yTvPbxsgGCPWDyHlyvQ-8wneoI2HBM3nAXubbxG9tFvq8t-mtyYWDn8ea0x2T19Pgxe06XL_PFbLpMtciqkAJymtdFSY0Ua8YQQCOXwCu61jzmzirIEWsDmCGtdGaACZnXlQQUek0NH5N0-LtxGr5V5-we3FG1YNWAeKcxnooVvCyyqL8b9J1rf3r0QW3b3jUxomJlLqioCiaiajKovmCHyjamDQ50nBr3VrcNGhvxqagYLQspaTTcDwbtWu8dmv8kjKq_OtSpDv4LCKB-EQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864049714</pqid></control><display><type>article</type><title>Use of Graph Invariants in Quantitative Structure-Activity Relationship Studies</title><source>Publicly Available Content Database</source><creator>Basak, Subhash C.</creator><creatorcontrib>Basak, Subhash C.</creatorcontrib><description>This chapter reviews results of research carried out by Basak and collaborators during the past four decades or so in the development of novel mathematical chemodescriptors and their applications in quantitative structure-activity relationship (QSAR) studies related to the prediction of toxicities and bioactivities of chemicals. For chemodescriptors based QSAR studies, we have used graph theoretical, three dimensional (3-D), and quantum chemical indices. The graph theoretic chemodescriptors fall into two major categories: (a) Numerical invariants defined on simple molecular graphs representing only the adjacency and distance relationship of atoms and bonds; such invariants are called topostructural (TS) indices; (b) Topological indices derived from weighted molecular graphs, called topochemical (TC) indices. Collectively, the TS and TC descriptors are known as topological indices (TIs). The set of independent variables used for modeling also includes a group of threedimensional (3-D) molecular descriptors. Semi-empirical and various levels of ab initio quantum chemical indices have also been used for hierarchical QSAR (HiQSAR) modeling. Results indicate that in many cases of property / activity / toxicity analyzed by us, a TS + TC combination explains most of the variance in the data.</description><identifier>ISSN: 0011-1643</identifier><identifier>EISSN: 1334-417X</identifier><identifier>DOI: 10.5562/cca3029</identifier><identifier>CODEN: CCACAA</identifier><language>eng</language><publisher>Zagreb: Croatica Chemica Acta</publisher><subject>anticancer activity ; applicability domain (AD) ; aryl hydrocarbon (Ah) receptor ; Bioinformatics ; Biological activity ; Chemical reactions ; Chemistry ; Collaboration ; congenericity principle ; dibenzofurans ; diversity begets diversity principle ; external validation ; graph invariant ; Graph theory ; Graphs ; Interrelated two way clustering (ITC) ; Invariants ; k-fold cross-validation ; leave-one-out (LOO) cross-validation ; Mathematical models ; model object ; Molecular structure ; mutagenicity ; naïve q2 ; principal component analysis (PCA) ; Proteomics ; quantitative structure-activity relationship (QSAR) ; quantum chemical descriptors ; R&amp;D ; rank-deficient ; Research &amp; development ; Software ; theoretical model ; Theory ; three dimensional (3-D) or geometrical descriptors ; topological indices (TIs) ; Toxicology ; true q2 ; two-deep cross validation</subject><ispartof>Croatica chemica acta, 2016-01, Vol.89 (4), p.1</ispartof><rights>COPYRIGHT 2016 Croatica Chemica Acta</rights><rights>Copyright Croatica Chemica Acta, Croatian Chemical Society 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-ae306d780f54b11eaace35a390bc313329a6eedfae2e09c2fa1456d95ae4cb0f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://hrcak.srce.hr/logo_broj/13598.jpg</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1864049714/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1864049714?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25732,27903,27904,36991,44569,74873</link.rule.ids></links><search><creatorcontrib>Basak, Subhash C.</creatorcontrib><title>Use of Graph Invariants in Quantitative Structure-Activity Relationship Studies</title><title>Croatica chemica acta</title><description>This chapter reviews results of research carried out by Basak and collaborators during the past four decades or so in the development of novel mathematical chemodescriptors and their applications in quantitative structure-activity relationship (QSAR) studies related to the prediction of toxicities and bioactivities of chemicals. For chemodescriptors based QSAR studies, we have used graph theoretical, three dimensional (3-D), and quantum chemical indices. The graph theoretic chemodescriptors fall into two major categories: (a) Numerical invariants defined on simple molecular graphs representing only the adjacency and distance relationship of atoms and bonds; such invariants are called topostructural (TS) indices; (b) Topological indices derived from weighted molecular graphs, called topochemical (TC) indices. Collectively, the TS and TC descriptors are known as topological indices (TIs). The set of independent variables used for modeling also includes a group of threedimensional (3-D) molecular descriptors. Semi-empirical and various levels of ab initio quantum chemical indices have also been used for hierarchical QSAR (HiQSAR) modeling. Results indicate that in many cases of property / activity / toxicity analyzed by us, a TS + TC combination explains most of the variance in the data.</description><subject>anticancer activity</subject><subject>applicability domain (AD)</subject><subject>aryl hydrocarbon (Ah) receptor</subject><subject>Bioinformatics</subject><subject>Biological activity</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Collaboration</subject><subject>congenericity principle</subject><subject>dibenzofurans</subject><subject>diversity begets diversity principle</subject><subject>external validation</subject><subject>graph invariant</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Interrelated two way clustering (ITC)</subject><subject>Invariants</subject><subject>k-fold cross-validation</subject><subject>leave-one-out (LOO) cross-validation</subject><subject>Mathematical models</subject><subject>model object</subject><subject>Molecular structure</subject><subject>mutagenicity</subject><subject>naïve q2</subject><subject>principal component analysis (PCA)</subject><subject>Proteomics</subject><subject>quantitative structure-activity relationship (QSAR)</subject><subject>quantum chemical descriptors</subject><subject>R&amp;D</subject><subject>rank-deficient</subject><subject>Research &amp; development</subject><subject>Software</subject><subject>theoretical model</subject><subject>Theory</subject><subject>three dimensional (3-D) or geometrical descriptors</subject><subject>topological indices (TIs)</subject><subject>Toxicology</subject><subject>true q2</subject><subject>two-deep cross validation</subject><issn>0011-1643</issn><issn>1334-417X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo9UdtKAzEQDaJgreIvLPjg09Zkk-zlsRSthYJ4KfgWptmJTW131yRb6N8b2SLzMMO5DAcOIbeMTqTMswetgdOsOiMjxrlIBSs-z8mIUsZSlgt-Sa6831KaSSHLEXlZeUxak8wddJtk0RzAWWiCT2yTvPbxsgGCPWDyHlyvQ-8wneoI2HBM3nAXubbxG9tFvq8t-mtyYWDn8ea0x2T19Pgxe06XL_PFbLpMtciqkAJymtdFSY0Ua8YQQCOXwCu61jzmzirIEWsDmCGtdGaACZnXlQQUek0NH5N0-LtxGr5V5-we3FG1YNWAeKcxnooVvCyyqL8b9J1rf3r0QW3b3jUxomJlLqioCiaiajKovmCHyjamDQ50nBr3VrcNGhvxqagYLQspaTTcDwbtWu8dmv8kjKq_OtSpDv4LCKB-EQ</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Basak, Subhash C.</creator><general>Croatica Chemica Acta</general><general>Croatica Chemica Acta, Croatian Chemical Society</general><general>Hrvatsko kemijsko društvo</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>VP8</scope></search><sort><creationdate>20160101</creationdate><title>Use of Graph Invariants in Quantitative Structure-Activity Relationship Studies</title><author>Basak, Subhash C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-ae306d780f54b11eaace35a390bc313329a6eedfae2e09c2fa1456d95ae4cb0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>anticancer activity</topic><topic>applicability domain (AD)</topic><topic>aryl hydrocarbon (Ah) receptor</topic><topic>Bioinformatics</topic><topic>Biological activity</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Collaboration</topic><topic>congenericity principle</topic><topic>dibenzofurans</topic><topic>diversity begets diversity principle</topic><topic>external validation</topic><topic>graph invariant</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Interrelated two way clustering (ITC)</topic><topic>Invariants</topic><topic>k-fold cross-validation</topic><topic>leave-one-out (LOO) cross-validation</topic><topic>Mathematical models</topic><topic>model object</topic><topic>Molecular structure</topic><topic>mutagenicity</topic><topic>naïve q2</topic><topic>principal component analysis (PCA)</topic><topic>Proteomics</topic><topic>quantitative structure-activity relationship (QSAR)</topic><topic>quantum chemical descriptors</topic><topic>R&amp;D</topic><topic>rank-deficient</topic><topic>Research &amp; development</topic><topic>Software</topic><topic>theoretical model</topic><topic>Theory</topic><topic>three dimensional (3-D) or geometrical descriptors</topic><topic>topological indices (TIs)</topic><topic>Toxicology</topic><topic>true q2</topic><topic>two-deep cross validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basak, Subhash C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hrcak: Portal of scientific journals of Croatia</collection><jtitle>Croatica chemica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basak, Subhash C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of Graph Invariants in Quantitative Structure-Activity Relationship Studies</atitle><jtitle>Croatica chemica acta</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>89</volume><issue>4</issue><spage>1</spage><pages>1-</pages><issn>0011-1643</issn><eissn>1334-417X</eissn><coden>CCACAA</coden><abstract>This chapter reviews results of research carried out by Basak and collaborators during the past four decades or so in the development of novel mathematical chemodescriptors and their applications in quantitative structure-activity relationship (QSAR) studies related to the prediction of toxicities and bioactivities of chemicals. For chemodescriptors based QSAR studies, we have used graph theoretical, three dimensional (3-D), and quantum chemical indices. The graph theoretic chemodescriptors fall into two major categories: (a) Numerical invariants defined on simple molecular graphs representing only the adjacency and distance relationship of atoms and bonds; such invariants are called topostructural (TS) indices; (b) Topological indices derived from weighted molecular graphs, called topochemical (TC) indices. Collectively, the TS and TC descriptors are known as topological indices (TIs). The set of independent variables used for modeling also includes a group of threedimensional (3-D) molecular descriptors. Semi-empirical and various levels of ab initio quantum chemical indices have also been used for hierarchical QSAR (HiQSAR) modeling. Results indicate that in many cases of property / activity / toxicity analyzed by us, a TS + TC combination explains most of the variance in the data.</abstract><cop>Zagreb</cop><pub>Croatica Chemica Acta</pub><doi>10.5562/cca3029</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0011-1643
ispartof Croatica chemica acta, 2016-01, Vol.89 (4), p.1
issn 0011-1643
1334-417X
language eng
recordid cdi_hrcak_primary_oai_hrcak_srce_hr_173872
source Publicly Available Content Database
subjects anticancer activity
applicability domain (AD)
aryl hydrocarbon (Ah) receptor
Bioinformatics
Biological activity
Chemical reactions
Chemistry
Collaboration
congenericity principle
dibenzofurans
diversity begets diversity principle
external validation
graph invariant
Graph theory
Graphs
Interrelated two way clustering (ITC)
Invariants
k-fold cross-validation
leave-one-out (LOO) cross-validation
Mathematical models
model object
Molecular structure
mutagenicity
naïve q2
principal component analysis (PCA)
Proteomics
quantitative structure-activity relationship (QSAR)
quantum chemical descriptors
R&D
rank-deficient
Research & development
Software
theoretical model
Theory
three dimensional (3-D) or geometrical descriptors
topological indices (TIs)
Toxicology
true q2
two-deep cross validation
title Use of Graph Invariants in Quantitative Structure-Activity Relationship Studies
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hrcak&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20Graph%20Invariants%20in%20Quantitative%20Structure-Activity%20Relationship%20Studies&rft.jtitle=Croatica%20chemica%20acta&rft.au=Basak,%20Subhash%20C.&rft.date=2016-01-01&rft.volume=89&rft.issue=4&rft.spage=1&rft.pages=1-&rft.issn=0011-1643&rft.eissn=1334-417X&rft.coden=CCACAA&rft_id=info:doi/10.5562/cca3029&rft_dat=%3Cgale_hrcak%3EA491087550%3C/gale_hrcak%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-ae306d780f54b11eaace35a390bc313329a6eedfae2e09c2fa1456d95ae4cb0f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1864049714&rft_id=info:pmid/&rft_galeid=A491087550&rfr_iscdi=true