Loading…
Use of Graph Invariants in Quantitative Structure-Activity Relationship Studies
This chapter reviews results of research carried out by Basak and collaborators during the past four decades or so in the development of novel mathematical chemodescriptors and their applications in quantitative structure-activity relationship (QSAR) studies related to the prediction of toxicities a...
Saved in:
Published in: | Croatica chemica acta 2016-01, Vol.89 (4), p.1 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c429t-ae306d780f54b11eaace35a390bc313329a6eedfae2e09c2fa1456d95ae4cb0f3 |
---|---|
cites | |
container_end_page | |
container_issue | 4 |
container_start_page | 1 |
container_title | Croatica chemica acta |
container_volume | 89 |
creator | Basak, Subhash C. |
description | This chapter reviews results of research carried out by Basak and collaborators during the past four decades or so in the development of novel mathematical chemodescriptors and their applications in quantitative structure-activity relationship (QSAR) studies related to the prediction of toxicities and bioactivities of chemicals. For chemodescriptors based QSAR studies, we have used graph theoretical, three dimensional (3-D), and quantum chemical indices. The graph theoretic chemodescriptors fall into two major categories: (a) Numerical invariants defined on simple molecular graphs representing only the adjacency and distance relationship of atoms and bonds; such invariants are called topostructural (TS) indices; (b) Topological indices derived from weighted molecular graphs, called topochemical (TC) indices. Collectively, the TS and TC descriptors are known as topological indices (TIs). The set of independent variables used for modeling also includes a group of threedimensional (3-D) molecular descriptors. Semi-empirical and various levels of ab initio quantum chemical indices have also been used for hierarchical QSAR (HiQSAR) modeling. Results indicate that in many cases of property / activity / toxicity analyzed by us, a TS + TC combination explains most of the variance in the data. |
doi_str_mv | 10.5562/cca3029 |
format | article |
fullrecord | <record><control><sourceid>gale_hrcak</sourceid><recordid>TN_cdi_hrcak_primary_oai_hrcak_srce_hr_173872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A491087550</galeid><sourcerecordid>A491087550</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-ae306d780f54b11eaace35a390bc313329a6eedfae2e09c2fa1456d95ae4cb0f3</originalsourceid><addsrcrecordid>eNo9UdtKAzEQDaJgreIvLPjg09Zkk-zlsRSthYJ4KfgWptmJTW131yRb6N8b2SLzMMO5DAcOIbeMTqTMswetgdOsOiMjxrlIBSs-z8mIUsZSlgt-Sa6831KaSSHLEXlZeUxak8wddJtk0RzAWWiCT2yTvPbxsgGCPWDyHlyvQ-8wneoI2HBM3nAXubbxG9tFvq8t-mtyYWDn8ea0x2T19Pgxe06XL_PFbLpMtciqkAJymtdFSY0Ua8YQQCOXwCu61jzmzirIEWsDmCGtdGaACZnXlQQUek0NH5N0-LtxGr5V5-we3FG1YNWAeKcxnooVvCyyqL8b9J1rf3r0QW3b3jUxomJlLqioCiaiajKovmCHyjamDQ50nBr3VrcNGhvxqagYLQspaTTcDwbtWu8dmv8kjKq_OtSpDv4LCKB-EQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1864049714</pqid></control><display><type>article</type><title>Use of Graph Invariants in Quantitative Structure-Activity Relationship Studies</title><source>Publicly Available Content Database</source><creator>Basak, Subhash C.</creator><creatorcontrib>Basak, Subhash C.</creatorcontrib><description>This chapter reviews results of research carried out by Basak and collaborators during the past four decades or so in the development of novel mathematical chemodescriptors and their applications in quantitative structure-activity relationship (QSAR) studies related to the prediction of toxicities and bioactivities of chemicals. For chemodescriptors based QSAR studies, we have used graph theoretical, three dimensional (3-D), and quantum chemical indices. The graph theoretic chemodescriptors fall into two major categories: (a) Numerical invariants defined on simple molecular graphs representing only the adjacency and distance relationship of atoms and bonds; such invariants are called topostructural (TS) indices; (b) Topological indices derived from weighted molecular graphs, called topochemical (TC) indices. Collectively, the TS and TC descriptors are known as topological indices (TIs). The set of independent variables used for modeling also includes a group of threedimensional (3-D) molecular descriptors. Semi-empirical and various levels of ab initio quantum chemical indices have also been used for hierarchical QSAR (HiQSAR) modeling. Results indicate that in many cases of property / activity / toxicity analyzed by us, a TS + TC combination explains most of the variance in the data.</description><identifier>ISSN: 0011-1643</identifier><identifier>EISSN: 1334-417X</identifier><identifier>DOI: 10.5562/cca3029</identifier><identifier>CODEN: CCACAA</identifier><language>eng</language><publisher>Zagreb: Croatica Chemica Acta</publisher><subject>anticancer activity ; applicability domain (AD) ; aryl hydrocarbon (Ah) receptor ; Bioinformatics ; Biological activity ; Chemical reactions ; Chemistry ; Collaboration ; congenericity principle ; dibenzofurans ; diversity begets diversity principle ; external validation ; graph invariant ; Graph theory ; Graphs ; Interrelated two way clustering (ITC) ; Invariants ; k-fold cross-validation ; leave-one-out (LOO) cross-validation ; Mathematical models ; model object ; Molecular structure ; mutagenicity ; naïve q2 ; principal component analysis (PCA) ; Proteomics ; quantitative structure-activity relationship (QSAR) ; quantum chemical descriptors ; R&D ; rank-deficient ; Research & development ; Software ; theoretical model ; Theory ; three dimensional (3-D) or geometrical descriptors ; topological indices (TIs) ; Toxicology ; true q2 ; two-deep cross validation</subject><ispartof>Croatica chemica acta, 2016-01, Vol.89 (4), p.1</ispartof><rights>COPYRIGHT 2016 Croatica Chemica Acta</rights><rights>Copyright Croatica Chemica Acta, Croatian Chemical Society 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-ae306d780f54b11eaace35a390bc313329a6eedfae2e09c2fa1456d95ae4cb0f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://hrcak.srce.hr/logo_broj/13598.jpg</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1864049714/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1864049714?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,25732,27903,27904,36991,44569,74873</link.rule.ids></links><search><creatorcontrib>Basak, Subhash C.</creatorcontrib><title>Use of Graph Invariants in Quantitative Structure-Activity Relationship Studies</title><title>Croatica chemica acta</title><description>This chapter reviews results of research carried out by Basak and collaborators during the past four decades or so in the development of novel mathematical chemodescriptors and their applications in quantitative structure-activity relationship (QSAR) studies related to the prediction of toxicities and bioactivities of chemicals. For chemodescriptors based QSAR studies, we have used graph theoretical, three dimensional (3-D), and quantum chemical indices. The graph theoretic chemodescriptors fall into two major categories: (a) Numerical invariants defined on simple molecular graphs representing only the adjacency and distance relationship of atoms and bonds; such invariants are called topostructural (TS) indices; (b) Topological indices derived from weighted molecular graphs, called topochemical (TC) indices. Collectively, the TS and TC descriptors are known as topological indices (TIs). The set of independent variables used for modeling also includes a group of threedimensional (3-D) molecular descriptors. Semi-empirical and various levels of ab initio quantum chemical indices have also been used for hierarchical QSAR (HiQSAR) modeling. Results indicate that in many cases of property / activity / toxicity analyzed by us, a TS + TC combination explains most of the variance in the data.</description><subject>anticancer activity</subject><subject>applicability domain (AD)</subject><subject>aryl hydrocarbon (Ah) receptor</subject><subject>Bioinformatics</subject><subject>Biological activity</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Collaboration</subject><subject>congenericity principle</subject><subject>dibenzofurans</subject><subject>diversity begets diversity principle</subject><subject>external validation</subject><subject>graph invariant</subject><subject>Graph theory</subject><subject>Graphs</subject><subject>Interrelated two way clustering (ITC)</subject><subject>Invariants</subject><subject>k-fold cross-validation</subject><subject>leave-one-out (LOO) cross-validation</subject><subject>Mathematical models</subject><subject>model object</subject><subject>Molecular structure</subject><subject>mutagenicity</subject><subject>naïve q2</subject><subject>principal component analysis (PCA)</subject><subject>Proteomics</subject><subject>quantitative structure-activity relationship (QSAR)</subject><subject>quantum chemical descriptors</subject><subject>R&D</subject><subject>rank-deficient</subject><subject>Research & development</subject><subject>Software</subject><subject>theoretical model</subject><subject>Theory</subject><subject>three dimensional (3-D) or geometrical descriptors</subject><subject>topological indices (TIs)</subject><subject>Toxicology</subject><subject>true q2</subject><subject>two-deep cross validation</subject><issn>0011-1643</issn><issn>1334-417X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo9UdtKAzEQDaJgreIvLPjg09Zkk-zlsRSthYJ4KfgWptmJTW131yRb6N8b2SLzMMO5DAcOIbeMTqTMswetgdOsOiMjxrlIBSs-z8mIUsZSlgt-Sa6831KaSSHLEXlZeUxak8wddJtk0RzAWWiCT2yTvPbxsgGCPWDyHlyvQ-8wneoI2HBM3nAXubbxG9tFvq8t-mtyYWDn8ea0x2T19Pgxe06XL_PFbLpMtciqkAJymtdFSY0Ua8YQQCOXwCu61jzmzirIEWsDmCGtdGaACZnXlQQUek0NH5N0-LtxGr5V5-we3FG1YNWAeKcxnooVvCyyqL8b9J1rf3r0QW3b3jUxomJlLqioCiaiajKovmCHyjamDQ50nBr3VrcNGhvxqagYLQspaTTcDwbtWu8dmv8kjKq_OtSpDv4LCKB-EQ</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Basak, Subhash C.</creator><general>Croatica Chemica Acta</general><general>Croatica Chemica Acta, Croatian Chemical Society</general><general>Hrvatsko kemijsko društvo</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>BYOGL</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>VP8</scope></search><sort><creationdate>20160101</creationdate><title>Use of Graph Invariants in Quantitative Structure-Activity Relationship Studies</title><author>Basak, Subhash C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-ae306d780f54b11eaace35a390bc313329a6eedfae2e09c2fa1456d95ae4cb0f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>anticancer activity</topic><topic>applicability domain (AD)</topic><topic>aryl hydrocarbon (Ah) receptor</topic><topic>Bioinformatics</topic><topic>Biological activity</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Collaboration</topic><topic>congenericity principle</topic><topic>dibenzofurans</topic><topic>diversity begets diversity principle</topic><topic>external validation</topic><topic>graph invariant</topic><topic>Graph theory</topic><topic>Graphs</topic><topic>Interrelated two way clustering (ITC)</topic><topic>Invariants</topic><topic>k-fold cross-validation</topic><topic>leave-one-out (LOO) cross-validation</topic><topic>Mathematical models</topic><topic>model object</topic><topic>Molecular structure</topic><topic>mutagenicity</topic><topic>naïve q2</topic><topic>principal component analysis (PCA)</topic><topic>Proteomics</topic><topic>quantitative structure-activity relationship (QSAR)</topic><topic>quantum chemical descriptors</topic><topic>R&D</topic><topic>rank-deficient</topic><topic>Research & development</topic><topic>Software</topic><topic>theoretical model</topic><topic>Theory</topic><topic>three dimensional (3-D) or geometrical descriptors</topic><topic>topological indices (TIs)</topic><topic>Toxicology</topic><topic>true q2</topic><topic>two-deep cross validation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basak, Subhash C.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>East Europe, Central Europe Database</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Hrcak: Portal of scientific journals of Croatia</collection><jtitle>Croatica chemica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basak, Subhash C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Use of Graph Invariants in Quantitative Structure-Activity Relationship Studies</atitle><jtitle>Croatica chemica acta</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>89</volume><issue>4</issue><spage>1</spage><pages>1-</pages><issn>0011-1643</issn><eissn>1334-417X</eissn><coden>CCACAA</coden><abstract>This chapter reviews results of research carried out by Basak and collaborators during the past four decades or so in the development of novel mathematical chemodescriptors and their applications in quantitative structure-activity relationship (QSAR) studies related to the prediction of toxicities and bioactivities of chemicals. For chemodescriptors based QSAR studies, we have used graph theoretical, three dimensional (3-D), and quantum chemical indices. The graph theoretic chemodescriptors fall into two major categories: (a) Numerical invariants defined on simple molecular graphs representing only the adjacency and distance relationship of atoms and bonds; such invariants are called topostructural (TS) indices; (b) Topological indices derived from weighted molecular graphs, called topochemical (TC) indices. Collectively, the TS and TC descriptors are known as topological indices (TIs). The set of independent variables used for modeling also includes a group of threedimensional (3-D) molecular descriptors. Semi-empirical and various levels of ab initio quantum chemical indices have also been used for hierarchical QSAR (HiQSAR) modeling. Results indicate that in many cases of property / activity / toxicity analyzed by us, a TS + TC combination explains most of the variance in the data.</abstract><cop>Zagreb</cop><pub>Croatica Chemica Acta</pub><doi>10.5562/cca3029</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0011-1643 |
ispartof | Croatica chemica acta, 2016-01, Vol.89 (4), p.1 |
issn | 0011-1643 1334-417X |
language | eng |
recordid | cdi_hrcak_primary_oai_hrcak_srce_hr_173872 |
source | Publicly Available Content Database |
subjects | anticancer activity applicability domain (AD) aryl hydrocarbon (Ah) receptor Bioinformatics Biological activity Chemical reactions Chemistry Collaboration congenericity principle dibenzofurans diversity begets diversity principle external validation graph invariant Graph theory Graphs Interrelated two way clustering (ITC) Invariants k-fold cross-validation leave-one-out (LOO) cross-validation Mathematical models model object Molecular structure mutagenicity naïve q2 principal component analysis (PCA) Proteomics quantitative structure-activity relationship (QSAR) quantum chemical descriptors R&D rank-deficient Research & development Software theoretical model Theory three dimensional (3-D) or geometrical descriptors topological indices (TIs) Toxicology true q2 two-deep cross validation |
title | Use of Graph Invariants in Quantitative Structure-Activity Relationship Studies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T18%3A37%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hrcak&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Use%20of%20Graph%20Invariants%20in%20Quantitative%20Structure-Activity%20Relationship%20Studies&rft.jtitle=Croatica%20chemica%20acta&rft.au=Basak,%20Subhash%20C.&rft.date=2016-01-01&rft.volume=89&rft.issue=4&rft.spage=1&rft.pages=1-&rft.issn=0011-1643&rft.eissn=1334-417X&rft.coden=CCACAA&rft_id=info:doi/10.5562/cca3029&rft_dat=%3Cgale_hrcak%3EA491087550%3C/gale_hrcak%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-ae306d780f54b11eaace35a390bc313329a6eedfae2e09c2fa1456d95ae4cb0f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1864049714&rft_id=info:pmid/&rft_galeid=A491087550&rfr_iscdi=true |