Loading…
Artificial Neural Networks for the Prediction of Compressive Strength of Concrete
In the paper, an artificial neural network (ANN) model is proposed to predict the compressive strength of concrete. For developing the ANN model the data bank on concrete compressive strength has been taken from the experiments conducted in the laboratory under standard conditions. The data set is o...
Saved in:
Published in: | International Journal of Applied Science and Engineering 2015-09, Vol.13 (3), p.187-204 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | Chinese |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the paper, an artificial neural network (ANN) model is proposed to predict the compressive strength of concrete. For developing the ANN model the data bank on concrete compressive strength has been taken from the experiments conducted in the laboratory under standard conditions. The data set is of two types; in one dataset 15% cement is replaced with fly ash and the other one is without any replacement. Several training algorithms, like Quasi-Newton algorithm with Broyden, Fletcher, Goldfarb, and Shanno (BFGS) update (BFG), Fletcher-reeves conjugate gradient algorithm (CGF), Polak-Ribiere conjugate gradient algorithm (CGP),Powell-Beale conjugate gradient algorithm (CGB), Levenberg-Marquardt (LM), Resilient backpropagation (RP), Scaled conjugate gradient backpropagation (SCG), One step Secant backpropagation (OSS) along with various network architectural parameters are experimentally investigated to arrive at the most suitable model for predicting the compressive strength of concrete. It is found that Leven |
---|---|
ISSN: | 1727-2394 |