Loading…
Improving the Machine Translation Model in Specific Domains for the Ukrainian Language
One of the main tasks of natural language generation is to improve the quality of translation. For a morphologically rich language like Ukrainian, there are few ordered datasets that can be the basis for further training of a machine learning model.
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 129 |
container_issue | |
container_start_page | 123 |
container_title | |
container_volume | |
creator | Maksymenko, Daniil Saichyshyna, Nataliia Turuta, Oleksii Turuta, Olena Yerokhin, Andriy Babii, Andrii |
description | One of the main tasks of natural language generation is to improve the quality of translation. For a morphologically rich language like Ukrainian, there are few ordered datasets that can be the basis for further training of a machine learning model. |
doi_str_mv | 10.1109/CSIT56902.2022.10000529 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10000529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10000529</ieee_id><sourcerecordid>10000529</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-cb633bc473b84fe1212738a96279354d68d862ea93602c679fa3f65a26a16d6f3</originalsourceid><addsrcrecordid>eNo1UNtKw0AUXAXBUvMHgvsDqbvnJCfZR4m3QIsPTX0tp8luu9psShIF_97gZV6GgZlhGCFutFporcxtsS6rlIyCBSiAhVYTUjBnIjKZyTFViAlqcy5mkBHFSGguRTQMb5MPQSWK9Ey8lu2p7z592MvxYOWK64MPVlY9h-HIo--CXHWNPUof5Ppka-98Le-7ln0YpOv6n9TmvZ-05yCXHPYfvLdX4sLxcbDRH8_F5vGhKp7j5ctTWdwtYz8NGON6R4i7OslwlyfOatCQYc6GIDOYJg3lTU5g2SApqCkzjtFRykCsqSGHc3H92-uttdtT71vuv7b_V-A3oHFSbw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improving the Machine Translation Model in Specific Domains for the Ukrainian Language</title><source>IEEE Xplore All Conference Series</source><creator>Maksymenko, Daniil ; Saichyshyna, Nataliia ; Turuta, Oleksii ; Turuta, Olena ; Yerokhin, Andriy ; Babii, Andrii</creator><creatorcontrib>Maksymenko, Daniil ; Saichyshyna, Nataliia ; Turuta, Oleksii ; Turuta, Olena ; Yerokhin, Andriy ; Babii, Andrii</creatorcontrib><description>One of the main tasks of natural language generation is to improve the quality of translation. For a morphologically rich language like Ukrainian, there are few ordered datasets that can be the basis for further training of a machine learning model.</description><identifier>EISSN: 2766-3639</identifier><identifier>EISBN: 9798350334319</identifier><identifier>DOI: 10.1109/CSIT56902.2022.10000529</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Computational modeling ; Data models ; Data visualization ; Machine learning ; Machine Translation ; Text Corpora ; Time measurement ; Training ; Ukrainian language generation</subject><ispartof>2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT), 2022, p.123-129</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10000529$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10000529$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Maksymenko, Daniil</creatorcontrib><creatorcontrib>Saichyshyna, Nataliia</creatorcontrib><creatorcontrib>Turuta, Oleksii</creatorcontrib><creatorcontrib>Turuta, Olena</creatorcontrib><creatorcontrib>Yerokhin, Andriy</creatorcontrib><creatorcontrib>Babii, Andrii</creatorcontrib><title>Improving the Machine Translation Model in Specific Domains for the Ukrainian Language</title><title>2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT)</title><addtitle>CSIT</addtitle><description>One of the main tasks of natural language generation is to improve the quality of translation. For a morphologically rich language like Ukrainian, there are few ordered datasets that can be the basis for further training of a machine learning model.</description><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Data visualization</subject><subject>Machine learning</subject><subject>Machine Translation</subject><subject>Text Corpora</subject><subject>Time measurement</subject><subject>Training</subject><subject>Ukrainian language generation</subject><issn>2766-3639</issn><isbn>9798350334319</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UNtKw0AUXAXBUvMHgvsDqbvnJCfZR4m3QIsPTX0tp8luu9psShIF_97gZV6GgZlhGCFutFporcxtsS6rlIyCBSiAhVYTUjBnIjKZyTFViAlqcy5mkBHFSGguRTQMb5MPQSWK9Ey8lu2p7z592MvxYOWK64MPVlY9h-HIo--CXHWNPUof5Ppka-98Le-7ln0YpOv6n9TmvZ-05yCXHPYfvLdX4sLxcbDRH8_F5vGhKp7j5ctTWdwtYz8NGON6R4i7OslwlyfOatCQYc6GIDOYJg3lTU5g2SApqCkzjtFRykCsqSGHc3H92-uttdtT71vuv7b_V-A3oHFSbw</recordid><startdate>20221110</startdate><enddate>20221110</enddate><creator>Maksymenko, Daniil</creator><creator>Saichyshyna, Nataliia</creator><creator>Turuta, Oleksii</creator><creator>Turuta, Olena</creator><creator>Yerokhin, Andriy</creator><creator>Babii, Andrii</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20221110</creationdate><title>Improving the Machine Translation Model in Specific Domains for the Ukrainian Language</title><author>Maksymenko, Daniil ; Saichyshyna, Nataliia ; Turuta, Oleksii ; Turuta, Olena ; Yerokhin, Andriy ; Babii, Andrii</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-cb633bc473b84fe1212738a96279354d68d862ea93602c679fa3f65a26a16d6f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Data visualization</topic><topic>Machine learning</topic><topic>Machine Translation</topic><topic>Text Corpora</topic><topic>Time measurement</topic><topic>Training</topic><topic>Ukrainian language generation</topic><toplevel>online_resources</toplevel><creatorcontrib>Maksymenko, Daniil</creatorcontrib><creatorcontrib>Saichyshyna, Nataliia</creatorcontrib><creatorcontrib>Turuta, Oleksii</creatorcontrib><creatorcontrib>Turuta, Olena</creatorcontrib><creatorcontrib>Yerokhin, Andriy</creatorcontrib><creatorcontrib>Babii, Andrii</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maksymenko, Daniil</au><au>Saichyshyna, Nataliia</au><au>Turuta, Oleksii</au><au>Turuta, Olena</au><au>Yerokhin, Andriy</au><au>Babii, Andrii</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improving the Machine Translation Model in Specific Domains for the Ukrainian Language</atitle><btitle>2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT)</btitle><stitle>CSIT</stitle><date>2022-11-10</date><risdate>2022</risdate><spage>123</spage><epage>129</epage><pages>123-129</pages><eissn>2766-3639</eissn><eisbn>9798350334319</eisbn><abstract>One of the main tasks of natural language generation is to improve the quality of translation. For a morphologically rich language like Ukrainian, there are few ordered datasets that can be the basis for further training of a machine learning model.</abstract><pub>IEEE</pub><doi>10.1109/CSIT56902.2022.10000529</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2766-3639 |
ispartof | 2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT), 2022, p.123-129 |
issn | 2766-3639 |
language | eng |
recordid | cdi_ieee_primary_10000529 |
source | IEEE Xplore All Conference Series |
subjects | Analytical models Computational modeling Data models Data visualization Machine learning Machine Translation Text Corpora Time measurement Training Ukrainian language generation |
title | Improving the Machine Translation Model in Specific Domains for the Ukrainian Language |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improving%20the%20Machine%20Translation%20Model%20in%20Specific%20Domains%20for%20the%20Ukrainian%20Language&rft.btitle=2022%20IEEE%2017th%20International%20Conference%20on%20Computer%20Sciences%20and%20Information%20Technologies%20(CSIT)&rft.au=Maksymenko,%20Daniil&rft.date=2022-11-10&rft.spage=123&rft.epage=129&rft.pages=123-129&rft.eissn=2766-3639&rft_id=info:doi/10.1109/CSIT56902.2022.10000529&rft.eisbn=9798350334319&rft_dat=%3Cieee_CHZPO%3E10000529%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-cb633bc473b84fe1212738a96279354d68d862ea93602c679fa3f65a26a16d6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10000529&rfr_iscdi=true |