Loading…

Improving the Machine Translation Model in Specific Domains for the Ukrainian Language

One of the main tasks of natural language generation is to improve the quality of translation. For a morphologically rich language like Ukrainian, there are few ordered datasets that can be the basis for further training of a machine learning model.

Saved in:
Bibliographic Details
Main Authors: Maksymenko, Daniil, Saichyshyna, Nataliia, Turuta, Oleksii, Turuta, Olena, Yerokhin, Andriy, Babii, Andrii
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 129
container_issue
container_start_page 123
container_title
container_volume
creator Maksymenko, Daniil
Saichyshyna, Nataliia
Turuta, Oleksii
Turuta, Olena
Yerokhin, Andriy
Babii, Andrii
description One of the main tasks of natural language generation is to improve the quality of translation. For a morphologically rich language like Ukrainian, there are few ordered datasets that can be the basis for further training of a machine learning model.
doi_str_mv 10.1109/CSIT56902.2022.10000529
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10000529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10000529</ieee_id><sourcerecordid>10000529</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-cb633bc473b84fe1212738a96279354d68d862ea93602c679fa3f65a26a16d6f3</originalsourceid><addsrcrecordid>eNo1UNtKw0AUXAXBUvMHgvsDqbvnJCfZR4m3QIsPTX0tp8luu9psShIF_97gZV6GgZlhGCFutFporcxtsS6rlIyCBSiAhVYTUjBnIjKZyTFViAlqcy5mkBHFSGguRTQMb5MPQSWK9Ey8lu2p7z592MvxYOWK64MPVlY9h-HIo--CXHWNPUof5Ppka-98Le-7ln0YpOv6n9TmvZ-05yCXHPYfvLdX4sLxcbDRH8_F5vGhKp7j5ctTWdwtYz8NGON6R4i7OslwlyfOatCQYc6GIDOYJg3lTU5g2SApqCkzjtFRykCsqSGHc3H92-uttdtT71vuv7b_V-A3oHFSbw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improving the Machine Translation Model in Specific Domains for the Ukrainian Language</title><source>IEEE Xplore All Conference Series</source><creator>Maksymenko, Daniil ; Saichyshyna, Nataliia ; Turuta, Oleksii ; Turuta, Olena ; Yerokhin, Andriy ; Babii, Andrii</creator><creatorcontrib>Maksymenko, Daniil ; Saichyshyna, Nataliia ; Turuta, Oleksii ; Turuta, Olena ; Yerokhin, Andriy ; Babii, Andrii</creatorcontrib><description>One of the main tasks of natural language generation is to improve the quality of translation. For a morphologically rich language like Ukrainian, there are few ordered datasets that can be the basis for further training of a machine learning model.</description><identifier>EISSN: 2766-3639</identifier><identifier>EISBN: 9798350334319</identifier><identifier>DOI: 10.1109/CSIT56902.2022.10000529</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Computational modeling ; Data models ; Data visualization ; Machine learning ; Machine Translation ; Text Corpora ; Time measurement ; Training ; Ukrainian language generation</subject><ispartof>2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT), 2022, p.123-129</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10000529$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10000529$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Maksymenko, Daniil</creatorcontrib><creatorcontrib>Saichyshyna, Nataliia</creatorcontrib><creatorcontrib>Turuta, Oleksii</creatorcontrib><creatorcontrib>Turuta, Olena</creatorcontrib><creatorcontrib>Yerokhin, Andriy</creatorcontrib><creatorcontrib>Babii, Andrii</creatorcontrib><title>Improving the Machine Translation Model in Specific Domains for the Ukrainian Language</title><title>2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT)</title><addtitle>CSIT</addtitle><description>One of the main tasks of natural language generation is to improve the quality of translation. For a morphologically rich language like Ukrainian, there are few ordered datasets that can be the basis for further training of a machine learning model.</description><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Data visualization</subject><subject>Machine learning</subject><subject>Machine Translation</subject><subject>Text Corpora</subject><subject>Time measurement</subject><subject>Training</subject><subject>Ukrainian language generation</subject><issn>2766-3639</issn><isbn>9798350334319</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1UNtKw0AUXAXBUvMHgvsDqbvnJCfZR4m3QIsPTX0tp8luu9psShIF_97gZV6GgZlhGCFutFporcxtsS6rlIyCBSiAhVYTUjBnIjKZyTFViAlqcy5mkBHFSGguRTQMb5MPQSWK9Ey8lu2p7z592MvxYOWK64MPVlY9h-HIo--CXHWNPUof5Ppka-98Le-7ln0YpOv6n9TmvZ-05yCXHPYfvLdX4sLxcbDRH8_F5vGhKp7j5ctTWdwtYz8NGON6R4i7OslwlyfOatCQYc6GIDOYJg3lTU5g2SApqCkzjtFRykCsqSGHc3H92-uttdtT71vuv7b_V-A3oHFSbw</recordid><startdate>20221110</startdate><enddate>20221110</enddate><creator>Maksymenko, Daniil</creator><creator>Saichyshyna, Nataliia</creator><creator>Turuta, Oleksii</creator><creator>Turuta, Olena</creator><creator>Yerokhin, Andriy</creator><creator>Babii, Andrii</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20221110</creationdate><title>Improving the Machine Translation Model in Specific Domains for the Ukrainian Language</title><author>Maksymenko, Daniil ; Saichyshyna, Nataliia ; Turuta, Oleksii ; Turuta, Olena ; Yerokhin, Andriy ; Babii, Andrii</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-cb633bc473b84fe1212738a96279354d68d862ea93602c679fa3f65a26a16d6f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Data visualization</topic><topic>Machine learning</topic><topic>Machine Translation</topic><topic>Text Corpora</topic><topic>Time measurement</topic><topic>Training</topic><topic>Ukrainian language generation</topic><toplevel>online_resources</toplevel><creatorcontrib>Maksymenko, Daniil</creatorcontrib><creatorcontrib>Saichyshyna, Nataliia</creatorcontrib><creatorcontrib>Turuta, Oleksii</creatorcontrib><creatorcontrib>Turuta, Olena</creatorcontrib><creatorcontrib>Yerokhin, Andriy</creatorcontrib><creatorcontrib>Babii, Andrii</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Maksymenko, Daniil</au><au>Saichyshyna, Nataliia</au><au>Turuta, Oleksii</au><au>Turuta, Olena</au><au>Yerokhin, Andriy</au><au>Babii, Andrii</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improving the Machine Translation Model in Specific Domains for the Ukrainian Language</atitle><btitle>2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT)</btitle><stitle>CSIT</stitle><date>2022-11-10</date><risdate>2022</risdate><spage>123</spage><epage>129</epage><pages>123-129</pages><eissn>2766-3639</eissn><eisbn>9798350334319</eisbn><abstract>One of the main tasks of natural language generation is to improve the quality of translation. For a morphologically rich language like Ukrainian, there are few ordered datasets that can be the basis for further training of a machine learning model.</abstract><pub>IEEE</pub><doi>10.1109/CSIT56902.2022.10000529</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2766-3639
ispartof 2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT), 2022, p.123-129
issn 2766-3639
language eng
recordid cdi_ieee_primary_10000529
source IEEE Xplore All Conference Series
subjects Analytical models
Computational modeling
Data models
Data visualization
Machine learning
Machine Translation
Text Corpora
Time measurement
Training
Ukrainian language generation
title Improving the Machine Translation Model in Specific Domains for the Ukrainian Language
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T17%3A07%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improving%20the%20Machine%20Translation%20Model%20in%20Specific%20Domains%20for%20the%20Ukrainian%20Language&rft.btitle=2022%20IEEE%2017th%20International%20Conference%20on%20Computer%20Sciences%20and%20Information%20Technologies%20(CSIT)&rft.au=Maksymenko,%20Daniil&rft.date=2022-11-10&rft.spage=123&rft.epage=129&rft.pages=123-129&rft.eissn=2766-3639&rft_id=info:doi/10.1109/CSIT56902.2022.10000529&rft.eisbn=9798350334319&rft_dat=%3Cieee_CHZPO%3E10000529%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-cb633bc473b84fe1212738a96279354d68d862ea93602c679fa3f65a26a16d6f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10000529&rfr_iscdi=true