Loading…

Privacy-Preserving and Communication-Efficient Energy Prediction Scheme Based on Federated Learning for Smart Grids

Energy forecasting is important because it enables infrastructure planning and power dispatching while reducing power outages and equipment failures. It is well-known that federated learning (FL) can be used to build a global energy predictor for smart grids without revealing the customers' raw...

Full description

Saved in:
Bibliographic Details
Published in:IEEE internet of things journal 2023-05, Vol.10 (9), p.1-1
Main Authors: Badr, Mahmoud M., Mahmoud, Mohamed, Fang, Yuguang, Abdulaal, Mohammed, Aljohani, Abdulah J., Alasmary, Waleed, Ibrahem, Mohamed I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-d373a60a93b1cac93b438ad2036fbc92f72755b07ab9441f21046d223a1c157c3
cites cdi_FETCH-LOGICAL-c294t-d373a60a93b1cac93b438ad2036fbc92f72755b07ab9441f21046d223a1c157c3
container_end_page 1
container_issue 9
container_start_page 1
container_title IEEE internet of things journal
container_volume 10
creator Badr, Mahmoud M.
Mahmoud, Mohamed
Fang, Yuguang
Abdulaal, Mohammed
Aljohani, Abdulah J.
Alasmary, Waleed
Ibrahem, Mohamed I.
description Energy forecasting is important because it enables infrastructure planning and power dispatching while reducing power outages and equipment failures. It is well-known that federated learning (FL) can be used to build a global energy predictor for smart grids without revealing the customers' raw data to preserve privacy. However, it still reveals local models' parameters during the training process, which may still leak customers' data privacy. In addition, for the global model to converge, it requires multiple training rounds, which must be done in a communication-efficient way. Moreover, most existing works only focus on load forecasting while neglecting energy forecasting in net-metering systems. To address these limitations, in this paper, we propose a privacy-preserving and communication-efficient FL-based energy predictor for net-metering systems. Based on a dataset for real power consumption/generation readings, we first propose a multi-data-source hybrid deep learning (DL)-based predictor to accurately predict future readings. Then, we repurpose an efficient inner-product functional encryption (IPFE) scheme for implementing secure data aggregation to preserve the customers' privacy by encrypting their models' parameters during the FL training. To address communication efficiency, we use a change and transmit (CAT) approach to update local model's parameters, where only the parameters with sufficient changes are updated. Our extensive studies demonstrate that our approach accurately predicts future readings while providing privacy protection and high communication efficiency.
doi_str_mv 10.1109/JIOT.2022.3230586
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10005179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10005179</ieee_id><sourcerecordid>2804114678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-d373a60a93b1cac93b438ad2036fbc92f72755b07ab9441f21046d223a1c157c3</originalsourceid><addsrcrecordid>eNpNkE9rAjEQxUNpoWL9AIUeAj2vzb9Ndo-tqLUICtpzyCZZG-lmbbIKfvtm0YOnN8O8NzP8AHjGaIwxKt--FqvtmCBCxpRQlBf8DgwIJSJjnJP7m_oRjGLcI4RSLMclH4C4Du6k9DlbBxttODm_g8obOGmb5uidVp1rfTata6ed9R2ceht2Z5jcxul-Bjf6xzYWfqhoDUz9zBobVJeapVXB9wvrNsBNo0IH58GZ-AQeavUb7eiqQ_A9m24nn9lyNV9M3peZJiXrMkMFVRypklZYK52E0UIZgiivK12SWhCR5xUSqioZwzXBiHFDCFVY41xoOgSvl72H0P4dbezkvj0Gn05KUiCGMeOiSC58cenQxhhsLQ_BpWfPEiPZ45U9XtnjlVe8KfNyyThr7Y0fJaqipP80FXZr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2804114678</pqid></control><display><type>article</type><title>Privacy-Preserving and Communication-Efficient Energy Prediction Scheme Based on Federated Learning for Smart Grids</title><source>IEEE Xplore (Online service)</source><creator>Badr, Mahmoud M. ; Mahmoud, Mohamed ; Fang, Yuguang ; Abdulaal, Mohammed ; Aljohani, Abdulah J. ; Alasmary, Waleed ; Ibrahem, Mohamed I.</creator><creatorcontrib>Badr, Mahmoud M. ; Mahmoud, Mohamed ; Fang, Yuguang ; Abdulaal, Mohammed ; Aljohani, Abdulah J. ; Alasmary, Waleed ; Ibrahem, Mohamed I.</creatorcontrib><description>Energy forecasting is important because it enables infrastructure planning and power dispatching while reducing power outages and equipment failures. It is well-known that federated learning (FL) can be used to build a global energy predictor for smart grids without revealing the customers' raw data to preserve privacy. However, it still reveals local models' parameters during the training process, which may still leak customers' data privacy. In addition, for the global model to converge, it requires multiple training rounds, which must be done in a communication-efficient way. Moreover, most existing works only focus on load forecasting while neglecting energy forecasting in net-metering systems. To address these limitations, in this paper, we propose a privacy-preserving and communication-efficient FL-based energy predictor for net-metering systems. Based on a dataset for real power consumption/generation readings, we first propose a multi-data-source hybrid deep learning (DL)-based predictor to accurately predict future readings. Then, we repurpose an efficient inner-product functional encryption (IPFE) scheme for implementing secure data aggregation to preserve the customers' privacy by encrypting their models' parameters during the FL training. To address communication efficiency, we use a change and transmit (CAT) approach to update local model's parameters, where only the parameters with sufficient changes are updated. Our extensive studies demonstrate that our approach accurately predicts future readings while providing privacy protection and high communication efficiency.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2022.3230586</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Communication ; communication efficiency ; Customers ; Data management ; Data models ; Deep learning ; Energy efficiency ; Energy prediction ; Federated learning ; Forecasting ; Mathematical models ; Net metering ; Power consumption ; Predictive models ; Privacy ; privacy preservation ; Process parameters ; Servers ; Smart grid ; Smart grids ; Training</subject><ispartof>IEEE internet of things journal, 2023-05, Vol.10 (9), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-d373a60a93b1cac93b438ad2036fbc92f72755b07ab9441f21046d223a1c157c3</citedby><cites>FETCH-LOGICAL-c294t-d373a60a93b1cac93b438ad2036fbc92f72755b07ab9441f21046d223a1c157c3</cites><orcidid>0000-0003-1734-8399 ; 0000-0002-4349-144X ; 0000-0002-1079-3871 ; 0000-0002-9992-7177 ; 0000-0002-8000-4161 ; 0000-0002-8719-501X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10005179$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Badr, Mahmoud M.</creatorcontrib><creatorcontrib>Mahmoud, Mohamed</creatorcontrib><creatorcontrib>Fang, Yuguang</creatorcontrib><creatorcontrib>Abdulaal, Mohammed</creatorcontrib><creatorcontrib>Aljohani, Abdulah J.</creatorcontrib><creatorcontrib>Alasmary, Waleed</creatorcontrib><creatorcontrib>Ibrahem, Mohamed I.</creatorcontrib><title>Privacy-Preserving and Communication-Efficient Energy Prediction Scheme Based on Federated Learning for Smart Grids</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Energy forecasting is important because it enables infrastructure planning and power dispatching while reducing power outages and equipment failures. It is well-known that federated learning (FL) can be used to build a global energy predictor for smart grids without revealing the customers' raw data to preserve privacy. However, it still reveals local models' parameters during the training process, which may still leak customers' data privacy. In addition, for the global model to converge, it requires multiple training rounds, which must be done in a communication-efficient way. Moreover, most existing works only focus on load forecasting while neglecting energy forecasting in net-metering systems. To address these limitations, in this paper, we propose a privacy-preserving and communication-efficient FL-based energy predictor for net-metering systems. Based on a dataset for real power consumption/generation readings, we first propose a multi-data-source hybrid deep learning (DL)-based predictor to accurately predict future readings. Then, we repurpose an efficient inner-product functional encryption (IPFE) scheme for implementing secure data aggregation to preserve the customers' privacy by encrypting their models' parameters during the FL training. To address communication efficiency, we use a change and transmit (CAT) approach to update local model's parameters, where only the parameters with sufficient changes are updated. Our extensive studies demonstrate that our approach accurately predicts future readings while providing privacy protection and high communication efficiency.</description><subject>Communication</subject><subject>communication efficiency</subject><subject>Customers</subject><subject>Data management</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Energy efficiency</subject><subject>Energy prediction</subject><subject>Federated learning</subject><subject>Forecasting</subject><subject>Mathematical models</subject><subject>Net metering</subject><subject>Power consumption</subject><subject>Predictive models</subject><subject>Privacy</subject><subject>privacy preservation</subject><subject>Process parameters</subject><subject>Servers</subject><subject>Smart grid</subject><subject>Smart grids</subject><subject>Training</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE9rAjEQxUNpoWL9AIUeAj2vzb9Ndo-tqLUICtpzyCZZG-lmbbIKfvtm0YOnN8O8NzP8AHjGaIwxKt--FqvtmCBCxpRQlBf8DgwIJSJjnJP7m_oRjGLcI4RSLMclH4C4Du6k9DlbBxttODm_g8obOGmb5uidVp1rfTata6ed9R2ceht2Z5jcxul-Bjf6xzYWfqhoDUz9zBobVJeapVXB9wvrNsBNo0IH58GZ-AQeavUb7eiqQ_A9m24nn9lyNV9M3peZJiXrMkMFVRypklZYK52E0UIZgiivK12SWhCR5xUSqioZwzXBiHFDCFVY41xoOgSvl72H0P4dbezkvj0Gn05KUiCGMeOiSC58cenQxhhsLQ_BpWfPEiPZ45U9XtnjlVe8KfNyyThr7Y0fJaqipP80FXZr</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Badr, Mahmoud M.</creator><creator>Mahmoud, Mohamed</creator><creator>Fang, Yuguang</creator><creator>Abdulaal, Mohammed</creator><creator>Aljohani, Abdulah J.</creator><creator>Alasmary, Waleed</creator><creator>Ibrahem, Mohamed I.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1734-8399</orcidid><orcidid>https://orcid.org/0000-0002-4349-144X</orcidid><orcidid>https://orcid.org/0000-0002-1079-3871</orcidid><orcidid>https://orcid.org/0000-0002-9992-7177</orcidid><orcidid>https://orcid.org/0000-0002-8000-4161</orcidid><orcidid>https://orcid.org/0000-0002-8719-501X</orcidid></search><sort><creationdate>20230501</creationdate><title>Privacy-Preserving and Communication-Efficient Energy Prediction Scheme Based on Federated Learning for Smart Grids</title><author>Badr, Mahmoud M. ; Mahmoud, Mohamed ; Fang, Yuguang ; Abdulaal, Mohammed ; Aljohani, Abdulah J. ; Alasmary, Waleed ; Ibrahem, Mohamed I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-d373a60a93b1cac93b438ad2036fbc92f72755b07ab9441f21046d223a1c157c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Communication</topic><topic>communication efficiency</topic><topic>Customers</topic><topic>Data management</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Energy efficiency</topic><topic>Energy prediction</topic><topic>Federated learning</topic><topic>Forecasting</topic><topic>Mathematical models</topic><topic>Net metering</topic><topic>Power consumption</topic><topic>Predictive models</topic><topic>Privacy</topic><topic>privacy preservation</topic><topic>Process parameters</topic><topic>Servers</topic><topic>Smart grid</topic><topic>Smart grids</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Badr, Mahmoud M.</creatorcontrib><creatorcontrib>Mahmoud, Mohamed</creatorcontrib><creatorcontrib>Fang, Yuguang</creatorcontrib><creatorcontrib>Abdulaal, Mohammed</creatorcontrib><creatorcontrib>Aljohani, Abdulah J.</creatorcontrib><creatorcontrib>Alasmary, Waleed</creatorcontrib><creatorcontrib>Ibrahem, Mohamed I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badr, Mahmoud M.</au><au>Mahmoud, Mohamed</au><au>Fang, Yuguang</au><au>Abdulaal, Mohammed</au><au>Aljohani, Abdulah J.</au><au>Alasmary, Waleed</au><au>Ibrahem, Mohamed I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Privacy-Preserving and Communication-Efficient Energy Prediction Scheme Based on Federated Learning for Smart Grids</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>10</volume><issue>9</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Energy forecasting is important because it enables infrastructure planning and power dispatching while reducing power outages and equipment failures. It is well-known that federated learning (FL) can be used to build a global energy predictor for smart grids without revealing the customers' raw data to preserve privacy. However, it still reveals local models' parameters during the training process, which may still leak customers' data privacy. In addition, for the global model to converge, it requires multiple training rounds, which must be done in a communication-efficient way. Moreover, most existing works only focus on load forecasting while neglecting energy forecasting in net-metering systems. To address these limitations, in this paper, we propose a privacy-preserving and communication-efficient FL-based energy predictor for net-metering systems. Based on a dataset for real power consumption/generation readings, we first propose a multi-data-source hybrid deep learning (DL)-based predictor to accurately predict future readings. Then, we repurpose an efficient inner-product functional encryption (IPFE) scheme for implementing secure data aggregation to preserve the customers' privacy by encrypting their models' parameters during the FL training. To address communication efficiency, we use a change and transmit (CAT) approach to update local model's parameters, where only the parameters with sufficient changes are updated. Our extensive studies demonstrate that our approach accurately predicts future readings while providing privacy protection and high communication efficiency.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2022.3230586</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1734-8399</orcidid><orcidid>https://orcid.org/0000-0002-4349-144X</orcidid><orcidid>https://orcid.org/0000-0002-1079-3871</orcidid><orcidid>https://orcid.org/0000-0002-9992-7177</orcidid><orcidid>https://orcid.org/0000-0002-8000-4161</orcidid><orcidid>https://orcid.org/0000-0002-8719-501X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2023-05, Vol.10 (9), p.1-1
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_10005179
source IEEE Xplore (Online service)
subjects Communication
communication efficiency
Customers
Data management
Data models
Deep learning
Energy efficiency
Energy prediction
Federated learning
Forecasting
Mathematical models
Net metering
Power consumption
Predictive models
Privacy
privacy preservation
Process parameters
Servers
Smart grid
Smart grids
Training
title Privacy-Preserving and Communication-Efficient Energy Prediction Scheme Based on Federated Learning for Smart Grids
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T07%3A43%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Privacy-Preserving%20and%20Communication-Efficient%20Energy%20Prediction%20Scheme%20Based%20on%20Federated%20Learning%20for%20Smart%20Grids&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Badr,%20Mahmoud%20M.&rft.date=2023-05-01&rft.volume=10&rft.issue=9&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2022.3230586&rft_dat=%3Cproquest_ieee_%3E2804114678%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-d373a60a93b1cac93b438ad2036fbc92f72755b07ab9441f21046d223a1c157c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2804114678&rft_id=info:pmid/&rft_ieee_id=10005179&rfr_iscdi=true