Loading…
Privacy-Preserving and Communication-Efficient Energy Prediction Scheme Based on Federated Learning for Smart Grids
Energy forecasting is important because it enables infrastructure planning and power dispatching while reducing power outages and equipment failures. It is well-known that federated learning (FL) can be used to build a global energy predictor for smart grids without revealing the customers' raw...
Saved in:
Published in: | IEEE internet of things journal 2023-05, Vol.10 (9), p.1-1 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c294t-d373a60a93b1cac93b438ad2036fbc92f72755b07ab9441f21046d223a1c157c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c294t-d373a60a93b1cac93b438ad2036fbc92f72755b07ab9441f21046d223a1c157c3 |
container_end_page | 1 |
container_issue | 9 |
container_start_page | 1 |
container_title | IEEE internet of things journal |
container_volume | 10 |
creator | Badr, Mahmoud M. Mahmoud, Mohamed Fang, Yuguang Abdulaal, Mohammed Aljohani, Abdulah J. Alasmary, Waleed Ibrahem, Mohamed I. |
description | Energy forecasting is important because it enables infrastructure planning and power dispatching while reducing power outages and equipment failures. It is well-known that federated learning (FL) can be used to build a global energy predictor for smart grids without revealing the customers' raw data to preserve privacy. However, it still reveals local models' parameters during the training process, which may still leak customers' data privacy. In addition, for the global model to converge, it requires multiple training rounds, which must be done in a communication-efficient way. Moreover, most existing works only focus on load forecasting while neglecting energy forecasting in net-metering systems. To address these limitations, in this paper, we propose a privacy-preserving and communication-efficient FL-based energy predictor for net-metering systems. Based on a dataset for real power consumption/generation readings, we first propose a multi-data-source hybrid deep learning (DL)-based predictor to accurately predict future readings. Then, we repurpose an efficient inner-product functional encryption (IPFE) scheme for implementing secure data aggregation to preserve the customers' privacy by encrypting their models' parameters during the FL training. To address communication efficiency, we use a change and transmit (CAT) approach to update local model's parameters, where only the parameters with sufficient changes are updated. Our extensive studies demonstrate that our approach accurately predicts future readings while providing privacy protection and high communication efficiency. |
doi_str_mv | 10.1109/JIOT.2022.3230586 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10005179</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10005179</ieee_id><sourcerecordid>2804114678</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-d373a60a93b1cac93b438ad2036fbc92f72755b07ab9441f21046d223a1c157c3</originalsourceid><addsrcrecordid>eNpNkE9rAjEQxUNpoWL9AIUeAj2vzb9Ndo-tqLUICtpzyCZZG-lmbbIKfvtm0YOnN8O8NzP8AHjGaIwxKt--FqvtmCBCxpRQlBf8DgwIJSJjnJP7m_oRjGLcI4RSLMclH4C4Du6k9DlbBxttODm_g8obOGmb5uidVp1rfTata6ed9R2ceht2Z5jcxul-Bjf6xzYWfqhoDUz9zBobVJeapVXB9wvrNsBNo0IH58GZ-AQeavUb7eiqQ_A9m24nn9lyNV9M3peZJiXrMkMFVRypklZYK52E0UIZgiivK12SWhCR5xUSqioZwzXBiHFDCFVY41xoOgSvl72H0P4dbezkvj0Gn05KUiCGMeOiSC58cenQxhhsLQ_BpWfPEiPZ45U9XtnjlVe8KfNyyThr7Y0fJaqipP80FXZr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2804114678</pqid></control><display><type>article</type><title>Privacy-Preserving and Communication-Efficient Energy Prediction Scheme Based on Federated Learning for Smart Grids</title><source>IEEE Xplore (Online service)</source><creator>Badr, Mahmoud M. ; Mahmoud, Mohamed ; Fang, Yuguang ; Abdulaal, Mohammed ; Aljohani, Abdulah J. ; Alasmary, Waleed ; Ibrahem, Mohamed I.</creator><creatorcontrib>Badr, Mahmoud M. ; Mahmoud, Mohamed ; Fang, Yuguang ; Abdulaal, Mohammed ; Aljohani, Abdulah J. ; Alasmary, Waleed ; Ibrahem, Mohamed I.</creatorcontrib><description>Energy forecasting is important because it enables infrastructure planning and power dispatching while reducing power outages and equipment failures. It is well-known that federated learning (FL) can be used to build a global energy predictor for smart grids without revealing the customers' raw data to preserve privacy. However, it still reveals local models' parameters during the training process, which may still leak customers' data privacy. In addition, for the global model to converge, it requires multiple training rounds, which must be done in a communication-efficient way. Moreover, most existing works only focus on load forecasting while neglecting energy forecasting in net-metering systems. To address these limitations, in this paper, we propose a privacy-preserving and communication-efficient FL-based energy predictor for net-metering systems. Based on a dataset for real power consumption/generation readings, we first propose a multi-data-source hybrid deep learning (DL)-based predictor to accurately predict future readings. Then, we repurpose an efficient inner-product functional encryption (IPFE) scheme for implementing secure data aggregation to preserve the customers' privacy by encrypting their models' parameters during the FL training. To address communication efficiency, we use a change and transmit (CAT) approach to update local model's parameters, where only the parameters with sufficient changes are updated. Our extensive studies demonstrate that our approach accurately predicts future readings while providing privacy protection and high communication efficiency.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2022.3230586</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Communication ; communication efficiency ; Customers ; Data management ; Data models ; Deep learning ; Energy efficiency ; Energy prediction ; Federated learning ; Forecasting ; Mathematical models ; Net metering ; Power consumption ; Predictive models ; Privacy ; privacy preservation ; Process parameters ; Servers ; Smart grid ; Smart grids ; Training</subject><ispartof>IEEE internet of things journal, 2023-05, Vol.10 (9), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-d373a60a93b1cac93b438ad2036fbc92f72755b07ab9441f21046d223a1c157c3</citedby><cites>FETCH-LOGICAL-c294t-d373a60a93b1cac93b438ad2036fbc92f72755b07ab9441f21046d223a1c157c3</cites><orcidid>0000-0003-1734-8399 ; 0000-0002-4349-144X ; 0000-0002-1079-3871 ; 0000-0002-9992-7177 ; 0000-0002-8000-4161 ; 0000-0002-8719-501X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10005179$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Badr, Mahmoud M.</creatorcontrib><creatorcontrib>Mahmoud, Mohamed</creatorcontrib><creatorcontrib>Fang, Yuguang</creatorcontrib><creatorcontrib>Abdulaal, Mohammed</creatorcontrib><creatorcontrib>Aljohani, Abdulah J.</creatorcontrib><creatorcontrib>Alasmary, Waleed</creatorcontrib><creatorcontrib>Ibrahem, Mohamed I.</creatorcontrib><title>Privacy-Preserving and Communication-Efficient Energy Prediction Scheme Based on Federated Learning for Smart Grids</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Energy forecasting is important because it enables infrastructure planning and power dispatching while reducing power outages and equipment failures. It is well-known that federated learning (FL) can be used to build a global energy predictor for smart grids without revealing the customers' raw data to preserve privacy. However, it still reveals local models' parameters during the training process, which may still leak customers' data privacy. In addition, for the global model to converge, it requires multiple training rounds, which must be done in a communication-efficient way. Moreover, most existing works only focus on load forecasting while neglecting energy forecasting in net-metering systems. To address these limitations, in this paper, we propose a privacy-preserving and communication-efficient FL-based energy predictor for net-metering systems. Based on a dataset for real power consumption/generation readings, we first propose a multi-data-source hybrid deep learning (DL)-based predictor to accurately predict future readings. Then, we repurpose an efficient inner-product functional encryption (IPFE) scheme for implementing secure data aggregation to preserve the customers' privacy by encrypting their models' parameters during the FL training. To address communication efficiency, we use a change and transmit (CAT) approach to update local model's parameters, where only the parameters with sufficient changes are updated. Our extensive studies demonstrate that our approach accurately predicts future readings while providing privacy protection and high communication efficiency.</description><subject>Communication</subject><subject>communication efficiency</subject><subject>Customers</subject><subject>Data management</subject><subject>Data models</subject><subject>Deep learning</subject><subject>Energy efficiency</subject><subject>Energy prediction</subject><subject>Federated learning</subject><subject>Forecasting</subject><subject>Mathematical models</subject><subject>Net metering</subject><subject>Power consumption</subject><subject>Predictive models</subject><subject>Privacy</subject><subject>privacy preservation</subject><subject>Process parameters</subject><subject>Servers</subject><subject>Smart grid</subject><subject>Smart grids</subject><subject>Training</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE9rAjEQxUNpoWL9AIUeAj2vzb9Ndo-tqLUICtpzyCZZG-lmbbIKfvtm0YOnN8O8NzP8AHjGaIwxKt--FqvtmCBCxpRQlBf8DgwIJSJjnJP7m_oRjGLcI4RSLMclH4C4Du6k9DlbBxttODm_g8obOGmb5uidVp1rfTata6ed9R2ceht2Z5jcxul-Bjf6xzYWfqhoDUz9zBobVJeapVXB9wvrNsBNo0IH58GZ-AQeavUb7eiqQ_A9m24nn9lyNV9M3peZJiXrMkMFVRypklZYK52E0UIZgiivK12SWhCR5xUSqioZwzXBiHFDCFVY41xoOgSvl72H0P4dbezkvj0Gn05KUiCGMeOiSC58cenQxhhsLQ_BpWfPEiPZ45U9XtnjlVe8KfNyyThr7Y0fJaqipP80FXZr</recordid><startdate>20230501</startdate><enddate>20230501</enddate><creator>Badr, Mahmoud M.</creator><creator>Mahmoud, Mohamed</creator><creator>Fang, Yuguang</creator><creator>Abdulaal, Mohammed</creator><creator>Aljohani, Abdulah J.</creator><creator>Alasmary, Waleed</creator><creator>Ibrahem, Mohamed I.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1734-8399</orcidid><orcidid>https://orcid.org/0000-0002-4349-144X</orcidid><orcidid>https://orcid.org/0000-0002-1079-3871</orcidid><orcidid>https://orcid.org/0000-0002-9992-7177</orcidid><orcidid>https://orcid.org/0000-0002-8000-4161</orcidid><orcidid>https://orcid.org/0000-0002-8719-501X</orcidid></search><sort><creationdate>20230501</creationdate><title>Privacy-Preserving and Communication-Efficient Energy Prediction Scheme Based on Federated Learning for Smart Grids</title><author>Badr, Mahmoud M. ; Mahmoud, Mohamed ; Fang, Yuguang ; Abdulaal, Mohammed ; Aljohani, Abdulah J. ; Alasmary, Waleed ; Ibrahem, Mohamed I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-d373a60a93b1cac93b438ad2036fbc92f72755b07ab9441f21046d223a1c157c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Communication</topic><topic>communication efficiency</topic><topic>Customers</topic><topic>Data management</topic><topic>Data models</topic><topic>Deep learning</topic><topic>Energy efficiency</topic><topic>Energy prediction</topic><topic>Federated learning</topic><topic>Forecasting</topic><topic>Mathematical models</topic><topic>Net metering</topic><topic>Power consumption</topic><topic>Predictive models</topic><topic>Privacy</topic><topic>privacy preservation</topic><topic>Process parameters</topic><topic>Servers</topic><topic>Smart grid</topic><topic>Smart grids</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Badr, Mahmoud M.</creatorcontrib><creatorcontrib>Mahmoud, Mohamed</creatorcontrib><creatorcontrib>Fang, Yuguang</creatorcontrib><creatorcontrib>Abdulaal, Mohammed</creatorcontrib><creatorcontrib>Aljohani, Abdulah J.</creatorcontrib><creatorcontrib>Alasmary, Waleed</creatorcontrib><creatorcontrib>Ibrahem, Mohamed I.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badr, Mahmoud M.</au><au>Mahmoud, Mohamed</au><au>Fang, Yuguang</au><au>Abdulaal, Mohammed</au><au>Aljohani, Abdulah J.</au><au>Alasmary, Waleed</au><au>Ibrahem, Mohamed I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Privacy-Preserving and Communication-Efficient Energy Prediction Scheme Based on Federated Learning for Smart Grids</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2023-05-01</date><risdate>2023</risdate><volume>10</volume><issue>9</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Energy forecasting is important because it enables infrastructure planning and power dispatching while reducing power outages and equipment failures. It is well-known that federated learning (FL) can be used to build a global energy predictor for smart grids without revealing the customers' raw data to preserve privacy. However, it still reveals local models' parameters during the training process, which may still leak customers' data privacy. In addition, for the global model to converge, it requires multiple training rounds, which must be done in a communication-efficient way. Moreover, most existing works only focus on load forecasting while neglecting energy forecasting in net-metering systems. To address these limitations, in this paper, we propose a privacy-preserving and communication-efficient FL-based energy predictor for net-metering systems. Based on a dataset for real power consumption/generation readings, we first propose a multi-data-source hybrid deep learning (DL)-based predictor to accurately predict future readings. Then, we repurpose an efficient inner-product functional encryption (IPFE) scheme for implementing secure data aggregation to preserve the customers' privacy by encrypting their models' parameters during the FL training. To address communication efficiency, we use a change and transmit (CAT) approach to update local model's parameters, where only the parameters with sufficient changes are updated. Our extensive studies demonstrate that our approach accurately predicts future readings while providing privacy protection and high communication efficiency.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2022.3230586</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-1734-8399</orcidid><orcidid>https://orcid.org/0000-0002-4349-144X</orcidid><orcidid>https://orcid.org/0000-0002-1079-3871</orcidid><orcidid>https://orcid.org/0000-0002-9992-7177</orcidid><orcidid>https://orcid.org/0000-0002-8000-4161</orcidid><orcidid>https://orcid.org/0000-0002-8719-501X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2023-05, Vol.10 (9), p.1-1 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_10005179 |
source | IEEE Xplore (Online service) |
subjects | Communication communication efficiency Customers Data management Data models Deep learning Energy efficiency Energy prediction Federated learning Forecasting Mathematical models Net metering Power consumption Predictive models Privacy privacy preservation Process parameters Servers Smart grid Smart grids Training |
title | Privacy-Preserving and Communication-Efficient Energy Prediction Scheme Based on Federated Learning for Smart Grids |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T07%3A43%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Privacy-Preserving%20and%20Communication-Efficient%20Energy%20Prediction%20Scheme%20Based%20on%20Federated%20Learning%20for%20Smart%20Grids&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Badr,%20Mahmoud%20M.&rft.date=2023-05-01&rft.volume=10&rft.issue=9&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2022.3230586&rft_dat=%3Cproquest_ieee_%3E2804114678%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-d373a60a93b1cac93b438ad2036fbc92f72755b07ab9441f21046d223a1c157c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2804114678&rft_id=info:pmid/&rft_ieee_id=10005179&rfr_iscdi=true |