Loading…
Adaptive iterative learning for heavy-haul trains trajectory tracking control on long steep downhill sections
The cyclic air braking strategy on the long steep downhill sections is applied to ensure safety of heavy-haul trains. At present, the driver drives manually according to the fixed operation pattern due to the complex line conditions and multiple control constraints on the cyclic air braking procedur...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 249 |
container_issue | |
container_start_page | 243 |
container_title | |
container_volume | |
creator | Wei, Mi Pengfei, Sun Qingyuan, Wang ZiPei, Zhang Chuanru, Wang Chuanxin, Zhang |
description | The cyclic air braking strategy on the long steep downhill sections is applied to ensure safety of heavy-haul trains. At present, the driver drives manually according to the fixed operation pattern due to the complex line conditions and multiple control constraints on the cyclic air braking procedure that causes operation difficulty and even security risk. In this paper, an adaptive iterative learning control (AILC) considering the operation strategy of cyclic air braking is designed to achieve the accuracy of the velocity and displacement tracking for heavy-haul trains on long steep downhill, in which the time-varying parameter uncertainties of the basic resistance and other integrated uncertainties during operation are taken fully into account. The composite energy function (CEF) method is utilized to describe the stability of the designed controller, with the development of iteration, the tracking error of velocity and displacement are both gradually decreased. The simulations demonstrate that the proposed algorithm can reliably choose proper timings of the implementing and releasing of cyclic air braking and have high trajectory tracking performance. |
doi_str_mv | 10.1109/ICIEA54703.2022.10005902 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10005902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10005902</ieee_id><sourcerecordid>10005902</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-65fc4ef4f3e12a2586cc31d2893f981fa086c0cbcbc81c574f77406480be83d53</originalsourceid><addsrcrecordid>eNo1kM1OAjEUhauJiYi8gYu-wGB_p50lIagkJG50TUrnVoqlJW3F8PYOojmLc87Nl7s4CGFKppSS7nE5Xy5mUijCp4wwNqWEENkRdoXuaNtKQTot-DUaMSp1w1inbtGklN1AcaqU5nSE9rPeHKo_AvYVsvlNAUyOPn5glzLegjmemq35Crhm42M52w5sTfl0jvbzTNoUa04Bp4hDGnqpAAfcp--49SHgMvA-xXKPbpwJBSZ_PkbvT4u3-Uuzen1ezmerxjMiatNKZwU44ThQZpjUrbWc9kx33HWaOkOGC7GbQZpaqYRTSpBWaLIBzXvJx-jh8tcDwPqQ_d7k0_p_Hv4Dl5Bc6Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Adaptive iterative learning for heavy-haul trains trajectory tracking control on long steep downhill sections</title><source>IEEE Xplore All Conference Series</source><creator>Wei, Mi ; Pengfei, Sun ; Qingyuan, Wang ; ZiPei, Zhang ; Chuanru, Wang ; Chuanxin, Zhang</creator><creatorcontrib>Wei, Mi ; Pengfei, Sun ; Qingyuan, Wang ; ZiPei, Zhang ; Chuanru, Wang ; Chuanxin, Zhang</creatorcontrib><description>The cyclic air braking strategy on the long steep downhill sections is applied to ensure safety of heavy-haul trains. At present, the driver drives manually according to the fixed operation pattern due to the complex line conditions and multiple control constraints on the cyclic air braking procedure that causes operation difficulty and even security risk. In this paper, an adaptive iterative learning control (AILC) considering the operation strategy of cyclic air braking is designed to achieve the accuracy of the velocity and displacement tracking for heavy-haul trains on long steep downhill, in which the time-varying parameter uncertainties of the basic resistance and other integrated uncertainties during operation are taken fully into account. The composite energy function (CEF) method is utilized to describe the stability of the designed controller, with the development of iteration, the tracking error of velocity and displacement are both gradually decreased. The simulations demonstrate that the proposed algorithm can reliably choose proper timings of the implementing and releasing of cyclic air braking and have high trajectory tracking performance.</description><identifier>EISSN: 2158-2297</identifier><identifier>EISBN: 1665409843</identifier><identifier>EISBN: 9781665409841</identifier><identifier>DOI: 10.1109/ICIEA54703.2022.10005902</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive iterative learning control (AILC) ; cyclic air braking ; heavy-haul trains ; long steep downhill sections ; Resistance ; Simulation ; Stability analysis ; Timing ; Trajectory tracking ; trajectory tracking control ; Uncertain systems ; Uncertainty</subject><ispartof>2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA), 2022, p.243-249</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10005902$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10005902$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wei, Mi</creatorcontrib><creatorcontrib>Pengfei, Sun</creatorcontrib><creatorcontrib>Qingyuan, Wang</creatorcontrib><creatorcontrib>ZiPei, Zhang</creatorcontrib><creatorcontrib>Chuanru, Wang</creatorcontrib><creatorcontrib>Chuanxin, Zhang</creatorcontrib><title>Adaptive iterative learning for heavy-haul trains trajectory tracking control on long steep downhill sections</title><title>2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA)</title><addtitle>ICIEA</addtitle><description>The cyclic air braking strategy on the long steep downhill sections is applied to ensure safety of heavy-haul trains. At present, the driver drives manually according to the fixed operation pattern due to the complex line conditions and multiple control constraints on the cyclic air braking procedure that causes operation difficulty and even security risk. In this paper, an adaptive iterative learning control (AILC) considering the operation strategy of cyclic air braking is designed to achieve the accuracy of the velocity and displacement tracking for heavy-haul trains on long steep downhill, in which the time-varying parameter uncertainties of the basic resistance and other integrated uncertainties during operation are taken fully into account. The composite energy function (CEF) method is utilized to describe the stability of the designed controller, with the development of iteration, the tracking error of velocity and displacement are both gradually decreased. The simulations demonstrate that the proposed algorithm can reliably choose proper timings of the implementing and releasing of cyclic air braking and have high trajectory tracking performance.</description><subject>Adaptive iterative learning control (AILC)</subject><subject>cyclic air braking</subject><subject>heavy-haul trains</subject><subject>long steep downhill sections</subject><subject>Resistance</subject><subject>Simulation</subject><subject>Stability analysis</subject><subject>Timing</subject><subject>Trajectory tracking</subject><subject>trajectory tracking control</subject><subject>Uncertain systems</subject><subject>Uncertainty</subject><issn>2158-2297</issn><isbn>1665409843</isbn><isbn>9781665409841</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kM1OAjEUhauJiYi8gYu-wGB_p50lIagkJG50TUrnVoqlJW3F8PYOojmLc87Nl7s4CGFKppSS7nE5Xy5mUijCp4wwNqWEENkRdoXuaNtKQTot-DUaMSp1w1inbtGklN1AcaqU5nSE9rPeHKo_AvYVsvlNAUyOPn5glzLegjmemq35Crhm42M52w5sTfl0jvbzTNoUa04Bp4hDGnqpAAfcp--49SHgMvA-xXKPbpwJBSZ_PkbvT4u3-Uuzen1ezmerxjMiatNKZwU44ThQZpjUrbWc9kx33HWaOkOGC7GbQZpaqYRTSpBWaLIBzXvJx-jh8tcDwPqQ_d7k0_p_Hv4Dl5Bc6Q</recordid><startdate>20221216</startdate><enddate>20221216</enddate><creator>Wei, Mi</creator><creator>Pengfei, Sun</creator><creator>Qingyuan, Wang</creator><creator>ZiPei, Zhang</creator><creator>Chuanru, Wang</creator><creator>Chuanxin, Zhang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20221216</creationdate><title>Adaptive iterative learning for heavy-haul trains trajectory tracking control on long steep downhill sections</title><author>Wei, Mi ; Pengfei, Sun ; Qingyuan, Wang ; ZiPei, Zhang ; Chuanru, Wang ; Chuanxin, Zhang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-65fc4ef4f3e12a2586cc31d2893f981fa086c0cbcbc81c574f77406480be83d53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptive iterative learning control (AILC)</topic><topic>cyclic air braking</topic><topic>heavy-haul trains</topic><topic>long steep downhill sections</topic><topic>Resistance</topic><topic>Simulation</topic><topic>Stability analysis</topic><topic>Timing</topic><topic>Trajectory tracking</topic><topic>trajectory tracking control</topic><topic>Uncertain systems</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Wei, Mi</creatorcontrib><creatorcontrib>Pengfei, Sun</creatorcontrib><creatorcontrib>Qingyuan, Wang</creatorcontrib><creatorcontrib>ZiPei, Zhang</creatorcontrib><creatorcontrib>Chuanru, Wang</creatorcontrib><creatorcontrib>Chuanxin, Zhang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei, Mi</au><au>Pengfei, Sun</au><au>Qingyuan, Wang</au><au>ZiPei, Zhang</au><au>Chuanru, Wang</au><au>Chuanxin, Zhang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Adaptive iterative learning for heavy-haul trains trajectory tracking control on long steep downhill sections</atitle><btitle>2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA)</btitle><stitle>ICIEA</stitle><date>2022-12-16</date><risdate>2022</risdate><spage>243</spage><epage>249</epage><pages>243-249</pages><eissn>2158-2297</eissn><eisbn>1665409843</eisbn><eisbn>9781665409841</eisbn><abstract>The cyclic air braking strategy on the long steep downhill sections is applied to ensure safety of heavy-haul trains. At present, the driver drives manually according to the fixed operation pattern due to the complex line conditions and multiple control constraints on the cyclic air braking procedure that causes operation difficulty and even security risk. In this paper, an adaptive iterative learning control (AILC) considering the operation strategy of cyclic air braking is designed to achieve the accuracy of the velocity and displacement tracking for heavy-haul trains on long steep downhill, in which the time-varying parameter uncertainties of the basic resistance and other integrated uncertainties during operation are taken fully into account. The composite energy function (CEF) method is utilized to describe the stability of the designed controller, with the development of iteration, the tracking error of velocity and displacement are both gradually decreased. The simulations demonstrate that the proposed algorithm can reliably choose proper timings of the implementing and releasing of cyclic air braking and have high trajectory tracking performance.</abstract><pub>IEEE</pub><doi>10.1109/ICIEA54703.2022.10005902</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2158-2297 |
ispartof | 2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA), 2022, p.243-249 |
issn | 2158-2297 |
language | eng |
recordid | cdi_ieee_primary_10005902 |
source | IEEE Xplore All Conference Series |
subjects | Adaptive iterative learning control (AILC) cyclic air braking heavy-haul trains long steep downhill sections Resistance Simulation Stability analysis Timing Trajectory tracking trajectory tracking control Uncertain systems Uncertainty |
title | Adaptive iterative learning for heavy-haul trains trajectory tracking control on long steep downhill sections |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T20%3A21%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Adaptive%20iterative%20learning%20for%20heavy-haul%20trains%20trajectory%20tracking%20control%20on%20long%20steep%20downhill%20sections&rft.btitle=2022%20IEEE%2017th%20Conference%20on%20Industrial%20Electronics%20and%20Applications%20(ICIEA)&rft.au=Wei,%20Mi&rft.date=2022-12-16&rft.spage=243&rft.epage=249&rft.pages=243-249&rft.eissn=2158-2297&rft_id=info:doi/10.1109/ICIEA54703.2022.10005902&rft.eisbn=1665409843&rft.eisbn_list=9781665409841&rft_dat=%3Cieee_CHZPO%3E10005902%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-65fc4ef4f3e12a2586cc31d2893f981fa086c0cbcbc81c574f77406480be83d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10005902&rfr_iscdi=true |