Loading…
Heterogeneous Reinforcement Learning Network for Aspect-based Sentiment Classification with External Knowledge
Aspect-based sentiment classification aims to automatically predict the sentiment polarity of the specific aspect in a text. However, it is challenging to confirm the mapping between the aspect and the core context since a number of existing methods concentrate on building the global relations of th...
Saved in:
Published in: | IEEE transactions on affective computing 2023-10, Vol.14 (4), p.1-14 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c296t-55332039e64b1c5d1b86aab32eef7856afe429393c7e2831ac49e16daa167e493 |
---|---|
cites | cdi_FETCH-LOGICAL-c296t-55332039e64b1c5d1b86aab32eef7856afe429393c7e2831ac49e16daa167e493 |
container_end_page | 14 |
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE transactions on affective computing |
container_volume | 14 |
creator | Cao, Yukun Tang, Yijia Du, Haizhou Xu, Feifei Wei, Ziyue Jin, Chengkun |
description | Aspect-based sentiment classification aims to automatically predict the sentiment polarity of the specific aspect in a text. However, it is challenging to confirm the mapping between the aspect and the core context since a number of existing methods concentrate on building the global relations of the full context rather than the partial connections based on the aspects. Motivated by the fundamental insights of reinforcement learning, we propose a novel H eterogeneous R einforcement L earning N etwork for aspect-based sentiment analysis (HRLN) to alleviate these issues, which contains two primary components, a heterogeneous network module, and a knowledge graph-based reinforcement learning module consistent with common-sense knowledge and emotional knowledge. To evaluate the effectiveness of HRLN, we conduct extensive experiments on five benchmark datasets, which indicate that HRLN achieves competitive performance and yields state-of-the-art results on all datasets. Additionally, we present an intuitive comprehension of why our HRLN model is more robust for aspect-based sentiment classification via case studies. |
doi_str_mv | 10.1109/TAFFC.2022.3233020 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10006401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10006401</ieee_id><sourcerecordid>2895004139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-55332039e64b1c5d1b86aab32eef7856afe429393c7e2831ac49e16daa167e493</originalsourceid><addsrcrecordid>eNpNkFFPwjAQxxejiQT5AsaHJj4P217XrY-EgBiJJorPS7fdsDhabEfQb-8GPHgvd8n9_pfLL4puGR0zRtXDajKfT8eccj4GDkA5vYgGTAkVAxXJ5b_5OhqFsKFdAYDk6SCyC2zRuzVadPtA3tDY2vkSt2hbskTtrbFr8oLtwfkv0q3IJOywbONCB6zIe4eZIzttdAimNqVujbPkYNpPMvvpblvdkGfrDg1Wa7yJrmrdBByd-zD6mM9W00W8fH18mk6WccmVbOMkAeAUFEpRsDKpWJFJrQvgiHWaJVLXKLgCBWWKPAOmS6GQyUprJlMUCobR_enuzrvvPYY237h9_0rIeaYSSgWDnuInqvQuBI91vvNmq_1vzmjeq82PavNebX5W24XuTiGDiP8ClEpBGfwBjjd2YA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895004139</pqid></control><display><type>article</type><title>Heterogeneous Reinforcement Learning Network for Aspect-based Sentiment Classification with External Knowledge</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Cao, Yukun ; Tang, Yijia ; Du, Haizhou ; Xu, Feifei ; Wei, Ziyue ; Jin, Chengkun</creator><creatorcontrib>Cao, Yukun ; Tang, Yijia ; Du, Haizhou ; Xu, Feifei ; Wei, Ziyue ; Jin, Chengkun</creatorcontrib><description>Aspect-based sentiment classification aims to automatically predict the sentiment polarity of the specific aspect in a text. However, it is challenging to confirm the mapping between the aspect and the core context since a number of existing methods concentrate on building the global relations of the full context rather than the partial connections based on the aspects. Motivated by the fundamental insights of reinforcement learning, we propose a novel H eterogeneous R einforcement L earning N etwork for aspect-based sentiment analysis (HRLN) to alleviate these issues, which contains two primary components, a heterogeneous network module, and a knowledge graph-based reinforcement learning module consistent with common-sense knowledge and emotional knowledge. To evaluate the effectiveness of HRLN, we conduct extensive experiments on five benchmark datasets, which indicate that HRLN achieves competitive performance and yields state-of-the-art results on all datasets. Additionally, we present an intuitive comprehension of why our HRLN model is more robust for aspect-based sentiment classification via case studies.</description><identifier>ISSN: 1949-3045</identifier><identifier>EISSN: 1949-3045</identifier><identifier>DOI: 10.1109/TAFFC.2022.3233020</identifier><identifier>CODEN: ITACBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>aspect-based sentiment classification ; Classification ; Context ; Data mining ; Datasets ; heterogeneous graph ; knowledge graph ; Knowledge representation ; Modules ; reinforcement learning ; Sentiment analysis</subject><ispartof>IEEE transactions on affective computing, 2023-10, Vol.14 (4), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-55332039e64b1c5d1b86aab32eef7856afe429393c7e2831ac49e16daa167e493</citedby><cites>FETCH-LOGICAL-c296t-55332039e64b1c5d1b86aab32eef7856afe429393c7e2831ac49e16daa167e493</cites><orcidid>0000-0001-7585-9715 ; 0000-0002-1875-5159 ; 0000-0003-0677-5192 ; 0000-0002-3066-3062 ; 0000-0001-8044-5912 ; 0000-0001-8770-0576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10006401$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Cao, Yukun</creatorcontrib><creatorcontrib>Tang, Yijia</creatorcontrib><creatorcontrib>Du, Haizhou</creatorcontrib><creatorcontrib>Xu, Feifei</creatorcontrib><creatorcontrib>Wei, Ziyue</creatorcontrib><creatorcontrib>Jin, Chengkun</creatorcontrib><title>Heterogeneous Reinforcement Learning Network for Aspect-based Sentiment Classification with External Knowledge</title><title>IEEE transactions on affective computing</title><addtitle>TAFFC</addtitle><description>Aspect-based sentiment classification aims to automatically predict the sentiment polarity of the specific aspect in a text. However, it is challenging to confirm the mapping between the aspect and the core context since a number of existing methods concentrate on building the global relations of the full context rather than the partial connections based on the aspects. Motivated by the fundamental insights of reinforcement learning, we propose a novel H eterogeneous R einforcement L earning N etwork for aspect-based sentiment analysis (HRLN) to alleviate these issues, which contains two primary components, a heterogeneous network module, and a knowledge graph-based reinforcement learning module consistent with common-sense knowledge and emotional knowledge. To evaluate the effectiveness of HRLN, we conduct extensive experiments on five benchmark datasets, which indicate that HRLN achieves competitive performance and yields state-of-the-art results on all datasets. Additionally, we present an intuitive comprehension of why our HRLN model is more robust for aspect-based sentiment classification via case studies.</description><subject>aspect-based sentiment classification</subject><subject>Classification</subject><subject>Context</subject><subject>Data mining</subject><subject>Datasets</subject><subject>heterogeneous graph</subject><subject>knowledge graph</subject><subject>Knowledge representation</subject><subject>Modules</subject><subject>reinforcement learning</subject><subject>Sentiment analysis</subject><issn>1949-3045</issn><issn>1949-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkFFPwjAQxxejiQT5AsaHJj4P217XrY-EgBiJJorPS7fdsDhabEfQb-8GPHgvd8n9_pfLL4puGR0zRtXDajKfT8eccj4GDkA5vYgGTAkVAxXJ5b_5OhqFsKFdAYDk6SCyC2zRuzVadPtA3tDY2vkSt2hbskTtrbFr8oLtwfkv0q3IJOywbONCB6zIe4eZIzttdAimNqVujbPkYNpPMvvpblvdkGfrDg1Wa7yJrmrdBByd-zD6mM9W00W8fH18mk6WccmVbOMkAeAUFEpRsDKpWJFJrQvgiHWaJVLXKLgCBWWKPAOmS6GQyUprJlMUCobR_enuzrvvPYY237h9_0rIeaYSSgWDnuInqvQuBI91vvNmq_1vzmjeq82PavNebX5W24XuTiGDiP8ClEpBGfwBjjd2YA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Cao, Yukun</creator><creator>Tang, Yijia</creator><creator>Du, Haizhou</creator><creator>Xu, Feifei</creator><creator>Wei, Ziyue</creator><creator>Jin, Chengkun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7585-9715</orcidid><orcidid>https://orcid.org/0000-0002-1875-5159</orcidid><orcidid>https://orcid.org/0000-0003-0677-5192</orcidid><orcidid>https://orcid.org/0000-0002-3066-3062</orcidid><orcidid>https://orcid.org/0000-0001-8044-5912</orcidid><orcidid>https://orcid.org/0000-0001-8770-0576</orcidid></search><sort><creationdate>20231001</creationdate><title>Heterogeneous Reinforcement Learning Network for Aspect-based Sentiment Classification with External Knowledge</title><author>Cao, Yukun ; Tang, Yijia ; Du, Haizhou ; Xu, Feifei ; Wei, Ziyue ; Jin, Chengkun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-55332039e64b1c5d1b86aab32eef7856afe429393c7e2831ac49e16daa167e493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>aspect-based sentiment classification</topic><topic>Classification</topic><topic>Context</topic><topic>Data mining</topic><topic>Datasets</topic><topic>heterogeneous graph</topic><topic>knowledge graph</topic><topic>Knowledge representation</topic><topic>Modules</topic><topic>reinforcement learning</topic><topic>Sentiment analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Yukun</creatorcontrib><creatorcontrib>Tang, Yijia</creatorcontrib><creatorcontrib>Du, Haizhou</creatorcontrib><creatorcontrib>Xu, Feifei</creatorcontrib><creatorcontrib>Wei, Ziyue</creatorcontrib><creatorcontrib>Jin, Chengkun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on affective computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Yukun</au><au>Tang, Yijia</au><au>Du, Haizhou</au><au>Xu, Feifei</au><au>Wei, Ziyue</au><au>Jin, Chengkun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous Reinforcement Learning Network for Aspect-based Sentiment Classification with External Knowledge</atitle><jtitle>IEEE transactions on affective computing</jtitle><stitle>TAFFC</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>14</volume><issue>4</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1949-3045</issn><eissn>1949-3045</eissn><coden>ITACBQ</coden><abstract>Aspect-based sentiment classification aims to automatically predict the sentiment polarity of the specific aspect in a text. However, it is challenging to confirm the mapping between the aspect and the core context since a number of existing methods concentrate on building the global relations of the full context rather than the partial connections based on the aspects. Motivated by the fundamental insights of reinforcement learning, we propose a novel H eterogeneous R einforcement L earning N etwork for aspect-based sentiment analysis (HRLN) to alleviate these issues, which contains two primary components, a heterogeneous network module, and a knowledge graph-based reinforcement learning module consistent with common-sense knowledge and emotional knowledge. To evaluate the effectiveness of HRLN, we conduct extensive experiments on five benchmark datasets, which indicate that HRLN achieves competitive performance and yields state-of-the-art results on all datasets. Additionally, we present an intuitive comprehension of why our HRLN model is more robust for aspect-based sentiment classification via case studies.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TAFFC.2022.3233020</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7585-9715</orcidid><orcidid>https://orcid.org/0000-0002-1875-5159</orcidid><orcidid>https://orcid.org/0000-0003-0677-5192</orcidid><orcidid>https://orcid.org/0000-0002-3066-3062</orcidid><orcidid>https://orcid.org/0000-0001-8044-5912</orcidid><orcidid>https://orcid.org/0000-0001-8770-0576</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1949-3045 |
ispartof | IEEE transactions on affective computing, 2023-10, Vol.14 (4), p.1-14 |
issn | 1949-3045 1949-3045 |
language | eng |
recordid | cdi_ieee_primary_10006401 |
source | IEEE Electronic Library (IEL) Journals |
subjects | aspect-based sentiment classification Classification Context Data mining Datasets heterogeneous graph knowledge graph Knowledge representation Modules reinforcement learning Sentiment analysis |
title | Heterogeneous Reinforcement Learning Network for Aspect-based Sentiment Classification with External Knowledge |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A25%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20Reinforcement%20Learning%20Network%20for%20Aspect-based%20Sentiment%20Classification%20with%20External%20Knowledge&rft.jtitle=IEEE%20transactions%20on%20affective%20computing&rft.au=Cao,%20Yukun&rft.date=2023-10-01&rft.volume=14&rft.issue=4&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1949-3045&rft.eissn=1949-3045&rft.coden=ITACBQ&rft_id=info:doi/10.1109/TAFFC.2022.3233020&rft_dat=%3Cproquest_ieee_%3E2895004139%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-55332039e64b1c5d1b86aab32eef7856afe429393c7e2831ac49e16daa167e493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2895004139&rft_id=info:pmid/&rft_ieee_id=10006401&rfr_iscdi=true |