Loading…

Heterogeneous Reinforcement Learning Network for Aspect-based Sentiment Classification with External Knowledge

Aspect-based sentiment classification aims to automatically predict the sentiment polarity of the specific aspect in a text. However, it is challenging to confirm the mapping between the aspect and the core context since a number of existing methods concentrate on building the global relations of th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on affective computing 2023-10, Vol.14 (4), p.1-14
Main Authors: Cao, Yukun, Tang, Yijia, Du, Haizhou, Xu, Feifei, Wei, Ziyue, Jin, Chengkun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c296t-55332039e64b1c5d1b86aab32eef7856afe429393c7e2831ac49e16daa167e493
cites cdi_FETCH-LOGICAL-c296t-55332039e64b1c5d1b86aab32eef7856afe429393c7e2831ac49e16daa167e493
container_end_page 14
container_issue 4
container_start_page 1
container_title IEEE transactions on affective computing
container_volume 14
creator Cao, Yukun
Tang, Yijia
Du, Haizhou
Xu, Feifei
Wei, Ziyue
Jin, Chengkun
description Aspect-based sentiment classification aims to automatically predict the sentiment polarity of the specific aspect in a text. However, it is challenging to confirm the mapping between the aspect and the core context since a number of existing methods concentrate on building the global relations of the full context rather than the partial connections based on the aspects. Motivated by the fundamental insights of reinforcement learning, we propose a novel H eterogeneous R einforcement L earning N etwork for aspect-based sentiment analysis (HRLN) to alleviate these issues, which contains two primary components, a heterogeneous network module, and a knowledge graph-based reinforcement learning module consistent with common-sense knowledge and emotional knowledge. To evaluate the effectiveness of HRLN, we conduct extensive experiments on five benchmark datasets, which indicate that HRLN achieves competitive performance and yields state-of-the-art results on all datasets. Additionally, we present an intuitive comprehension of why our HRLN model is more robust for aspect-based sentiment classification via case studies.
doi_str_mv 10.1109/TAFFC.2022.3233020
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10006401</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10006401</ieee_id><sourcerecordid>2895004139</sourcerecordid><originalsourceid>FETCH-LOGICAL-c296t-55332039e64b1c5d1b86aab32eef7856afe429393c7e2831ac49e16daa167e493</originalsourceid><addsrcrecordid>eNpNkFFPwjAQxxejiQT5AsaHJj4P217XrY-EgBiJJorPS7fdsDhabEfQb-8GPHgvd8n9_pfLL4puGR0zRtXDajKfT8eccj4GDkA5vYgGTAkVAxXJ5b_5OhqFsKFdAYDk6SCyC2zRuzVadPtA3tDY2vkSt2hbskTtrbFr8oLtwfkv0q3IJOywbONCB6zIe4eZIzttdAimNqVujbPkYNpPMvvpblvdkGfrDg1Wa7yJrmrdBByd-zD6mM9W00W8fH18mk6WccmVbOMkAeAUFEpRsDKpWJFJrQvgiHWaJVLXKLgCBWWKPAOmS6GQyUprJlMUCobR_enuzrvvPYY237h9_0rIeaYSSgWDnuInqvQuBI91vvNmq_1vzmjeq82PavNebX5W24XuTiGDiP8ClEpBGfwBjjd2YA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2895004139</pqid></control><display><type>article</type><title>Heterogeneous Reinforcement Learning Network for Aspect-based Sentiment Classification with External Knowledge</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Cao, Yukun ; Tang, Yijia ; Du, Haizhou ; Xu, Feifei ; Wei, Ziyue ; Jin, Chengkun</creator><creatorcontrib>Cao, Yukun ; Tang, Yijia ; Du, Haizhou ; Xu, Feifei ; Wei, Ziyue ; Jin, Chengkun</creatorcontrib><description>Aspect-based sentiment classification aims to automatically predict the sentiment polarity of the specific aspect in a text. However, it is challenging to confirm the mapping between the aspect and the core context since a number of existing methods concentrate on building the global relations of the full context rather than the partial connections based on the aspects. Motivated by the fundamental insights of reinforcement learning, we propose a novel H eterogeneous R einforcement L earning N etwork for aspect-based sentiment analysis (HRLN) to alleviate these issues, which contains two primary components, a heterogeneous network module, and a knowledge graph-based reinforcement learning module consistent with common-sense knowledge and emotional knowledge. To evaluate the effectiveness of HRLN, we conduct extensive experiments on five benchmark datasets, which indicate that HRLN achieves competitive performance and yields state-of-the-art results on all datasets. Additionally, we present an intuitive comprehension of why our HRLN model is more robust for aspect-based sentiment classification via case studies.</description><identifier>ISSN: 1949-3045</identifier><identifier>EISSN: 1949-3045</identifier><identifier>DOI: 10.1109/TAFFC.2022.3233020</identifier><identifier>CODEN: ITACBQ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>aspect-based sentiment classification ; Classification ; Context ; Data mining ; Datasets ; heterogeneous graph ; knowledge graph ; Knowledge representation ; Modules ; reinforcement learning ; Sentiment analysis</subject><ispartof>IEEE transactions on affective computing, 2023-10, Vol.14 (4), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c296t-55332039e64b1c5d1b86aab32eef7856afe429393c7e2831ac49e16daa167e493</citedby><cites>FETCH-LOGICAL-c296t-55332039e64b1c5d1b86aab32eef7856afe429393c7e2831ac49e16daa167e493</cites><orcidid>0000-0001-7585-9715 ; 0000-0002-1875-5159 ; 0000-0003-0677-5192 ; 0000-0002-3066-3062 ; 0000-0001-8044-5912 ; 0000-0001-8770-0576</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10006401$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Cao, Yukun</creatorcontrib><creatorcontrib>Tang, Yijia</creatorcontrib><creatorcontrib>Du, Haizhou</creatorcontrib><creatorcontrib>Xu, Feifei</creatorcontrib><creatorcontrib>Wei, Ziyue</creatorcontrib><creatorcontrib>Jin, Chengkun</creatorcontrib><title>Heterogeneous Reinforcement Learning Network for Aspect-based Sentiment Classification with External Knowledge</title><title>IEEE transactions on affective computing</title><addtitle>TAFFC</addtitle><description>Aspect-based sentiment classification aims to automatically predict the sentiment polarity of the specific aspect in a text. However, it is challenging to confirm the mapping between the aspect and the core context since a number of existing methods concentrate on building the global relations of the full context rather than the partial connections based on the aspects. Motivated by the fundamental insights of reinforcement learning, we propose a novel H eterogeneous R einforcement L earning N etwork for aspect-based sentiment analysis (HRLN) to alleviate these issues, which contains two primary components, a heterogeneous network module, and a knowledge graph-based reinforcement learning module consistent with common-sense knowledge and emotional knowledge. To evaluate the effectiveness of HRLN, we conduct extensive experiments on five benchmark datasets, which indicate that HRLN achieves competitive performance and yields state-of-the-art results on all datasets. Additionally, we present an intuitive comprehension of why our HRLN model is more robust for aspect-based sentiment classification via case studies.</description><subject>aspect-based sentiment classification</subject><subject>Classification</subject><subject>Context</subject><subject>Data mining</subject><subject>Datasets</subject><subject>heterogeneous graph</subject><subject>knowledge graph</subject><subject>Knowledge representation</subject><subject>Modules</subject><subject>reinforcement learning</subject><subject>Sentiment analysis</subject><issn>1949-3045</issn><issn>1949-3045</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkFFPwjAQxxejiQT5AsaHJj4P217XrY-EgBiJJorPS7fdsDhabEfQb-8GPHgvd8n9_pfLL4puGR0zRtXDajKfT8eccj4GDkA5vYgGTAkVAxXJ5b_5OhqFsKFdAYDk6SCyC2zRuzVadPtA3tDY2vkSt2hbskTtrbFr8oLtwfkv0q3IJOywbONCB6zIe4eZIzttdAimNqVujbPkYNpPMvvpblvdkGfrDg1Wa7yJrmrdBByd-zD6mM9W00W8fH18mk6WccmVbOMkAeAUFEpRsDKpWJFJrQvgiHWaJVLXKLgCBWWKPAOmS6GQyUprJlMUCobR_enuzrvvPYY237h9_0rIeaYSSgWDnuInqvQuBI91vvNmq_1vzmjeq82PavNebX5W24XuTiGDiP8ClEpBGfwBjjd2YA</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Cao, Yukun</creator><creator>Tang, Yijia</creator><creator>Du, Haizhou</creator><creator>Xu, Feifei</creator><creator>Wei, Ziyue</creator><creator>Jin, Chengkun</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7585-9715</orcidid><orcidid>https://orcid.org/0000-0002-1875-5159</orcidid><orcidid>https://orcid.org/0000-0003-0677-5192</orcidid><orcidid>https://orcid.org/0000-0002-3066-3062</orcidid><orcidid>https://orcid.org/0000-0001-8044-5912</orcidid><orcidid>https://orcid.org/0000-0001-8770-0576</orcidid></search><sort><creationdate>20231001</creationdate><title>Heterogeneous Reinforcement Learning Network for Aspect-based Sentiment Classification with External Knowledge</title><author>Cao, Yukun ; Tang, Yijia ; Du, Haizhou ; Xu, Feifei ; Wei, Ziyue ; Jin, Chengkun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c296t-55332039e64b1c5d1b86aab32eef7856afe429393c7e2831ac49e16daa167e493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>aspect-based sentiment classification</topic><topic>Classification</topic><topic>Context</topic><topic>Data mining</topic><topic>Datasets</topic><topic>heterogeneous graph</topic><topic>knowledge graph</topic><topic>Knowledge representation</topic><topic>Modules</topic><topic>reinforcement learning</topic><topic>Sentiment analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Yukun</creatorcontrib><creatorcontrib>Tang, Yijia</creatorcontrib><creatorcontrib>Du, Haizhou</creatorcontrib><creatorcontrib>Xu, Feifei</creatorcontrib><creatorcontrib>Wei, Ziyue</creatorcontrib><creatorcontrib>Jin, Chengkun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on affective computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Yukun</au><au>Tang, Yijia</au><au>Du, Haizhou</au><au>Xu, Feifei</au><au>Wei, Ziyue</au><au>Jin, Chengkun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous Reinforcement Learning Network for Aspect-based Sentiment Classification with External Knowledge</atitle><jtitle>IEEE transactions on affective computing</jtitle><stitle>TAFFC</stitle><date>2023-10-01</date><risdate>2023</risdate><volume>14</volume><issue>4</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1949-3045</issn><eissn>1949-3045</eissn><coden>ITACBQ</coden><abstract>Aspect-based sentiment classification aims to automatically predict the sentiment polarity of the specific aspect in a text. However, it is challenging to confirm the mapping between the aspect and the core context since a number of existing methods concentrate on building the global relations of the full context rather than the partial connections based on the aspects. Motivated by the fundamental insights of reinforcement learning, we propose a novel H eterogeneous R einforcement L earning N etwork for aspect-based sentiment analysis (HRLN) to alleviate these issues, which contains two primary components, a heterogeneous network module, and a knowledge graph-based reinforcement learning module consistent with common-sense knowledge and emotional knowledge. To evaluate the effectiveness of HRLN, we conduct extensive experiments on five benchmark datasets, which indicate that HRLN achieves competitive performance and yields state-of-the-art results on all datasets. Additionally, we present an intuitive comprehension of why our HRLN model is more robust for aspect-based sentiment classification via case studies.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TAFFC.2022.3233020</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7585-9715</orcidid><orcidid>https://orcid.org/0000-0002-1875-5159</orcidid><orcidid>https://orcid.org/0000-0003-0677-5192</orcidid><orcidid>https://orcid.org/0000-0002-3066-3062</orcidid><orcidid>https://orcid.org/0000-0001-8044-5912</orcidid><orcidid>https://orcid.org/0000-0001-8770-0576</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1949-3045
ispartof IEEE transactions on affective computing, 2023-10, Vol.14 (4), p.1-14
issn 1949-3045
1949-3045
language eng
recordid cdi_ieee_primary_10006401
source IEEE Electronic Library (IEL) Journals
subjects aspect-based sentiment classification
Classification
Context
Data mining
Datasets
heterogeneous graph
knowledge graph
Knowledge representation
Modules
reinforcement learning
Sentiment analysis
title Heterogeneous Reinforcement Learning Network for Aspect-based Sentiment Classification with External Knowledge
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T09%3A25%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20Reinforcement%20Learning%20Network%20for%20Aspect-based%20Sentiment%20Classification%20with%20External%20Knowledge&rft.jtitle=IEEE%20transactions%20on%20affective%20computing&rft.au=Cao,%20Yukun&rft.date=2023-10-01&rft.volume=14&rft.issue=4&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1949-3045&rft.eissn=1949-3045&rft.coden=ITACBQ&rft_id=info:doi/10.1109/TAFFC.2022.3233020&rft_dat=%3Cproquest_ieee_%3E2895004139%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c296t-55332039e64b1c5d1b86aab32eef7856afe429393c7e2831ac49e16daa167e493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2895004139&rft_id=info:pmid/&rft_ieee_id=10006401&rfr_iscdi=true