Loading…

Hyperspectral Image Classification using Extended Local Binary Patterns and Wavelet Transform Descriptors

The performance and accuracy of the hyperspectral image classifier depends on the specific features present in the image as well as the method employed to select the samples used for the learning stage. In this paper, we investigate the use of evolved texture descriptors in a spectral-spatial design...

Full description

Saved in:
Bibliographic Details
Main Authors: Andreia, Miclea, Terebes, Romulus, Cislariu, Mihaela
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Andreia, Miclea
Terebes, Romulus
Cislariu, Mihaela
description The performance and accuracy of the hyperspectral image classifier depends on the specific features present in the image as well as the method employed to select the samples used for the learning stage. In this paper, we investigate the use of evolved texture descriptors in a spectral-spatial design for the classification of hyperspectral images. We integrate the Extended Local Binary Pattern operator in a parallel hyperspectral image classification framework chain that uses wavelet descriptors for the spectral dimension. We investigate the benefits of the rich spatial information on the accuracy obtained based on the classification chain, and we show through experimental validation carried out on two open datasets (Salinas and Pavia University) that the performances are improved. The proposed framework with the corresponding methods performs well when evaluated on the two open datasets, by using a random, respectively controlled strategy for selecting the databases for training and testing.
doi_str_mv 10.1109/ISETC56213.2022.10009976
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10009976</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10009976</ieee_id><sourcerecordid>10009976</sourcerecordid><originalsourceid>FETCH-LOGICAL-i493-43c1778e0579adaf9e0c15f2ccba1061fefb27b1f3444d4c88af63a47aa51c8d3</originalsourceid><addsrcrecordid>eNo1kFFLwzAUhaMgOOb-gQ_5A525TdI0jzqnKwwUHPg47tKbEenakkRx_96C-nRePg7fOYxxEEsAYe-at_VupasS5LIUZbkEIYS1prpgC2tqqCqtNGihL9msVEYXpq7gmi1S-phACVYIZWYsbM4jxTSSyxE73pzwSHzVYUrBB4c5DD3_TKE_8vV3pr6llm8HN5EPocd45q-YM8U-cexb_o5f1FHmu4h98kM88UdKLoYxDzHdsCuPXaLFX87Z7mlasCm2L8_N6n5bBGVloaQDY2oS2lhs0VsSDrQvnTsgiAo8-UNpDuClUqpVrq7RVxKVQdTg6lbO2e1vbSCi_RjDadLc_58jfwAiYlva</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hyperspectral Image Classification using Extended Local Binary Patterns and Wavelet Transform Descriptors</title><source>IEEE Xplore All Conference Series</source><creator>Andreia, Miclea ; Terebes, Romulus ; Cislariu, Mihaela</creator><creatorcontrib>Andreia, Miclea ; Terebes, Romulus ; Cislariu, Mihaela</creatorcontrib><description>The performance and accuracy of the hyperspectral image classifier depends on the specific features present in the image as well as the method employed to select the samples used for the learning stage. In this paper, we investigate the use of evolved texture descriptors in a spectral-spatial design for the classification of hyperspectral images. We integrate the Extended Local Binary Pattern operator in a parallel hyperspectral image classification framework chain that uses wavelet descriptors for the spectral dimension. We investigate the benefits of the rich spatial information on the accuracy obtained based on the classification chain, and we show through experimental validation carried out on two open datasets (Salinas and Pavia University) that the performances are improved. The proposed framework with the corresponding methods performs well when evaluated on the two open datasets, by using a random, respectively controlled strategy for selecting the databases for training and testing.</description><identifier>EISSN: 2475-7861</identifier><identifier>EISBN: 9781665451505</identifier><identifier>EISBN: 1665451505</identifier><identifier>DOI: 10.1109/ISETC56213.2022.10009976</identifier><language>eng</language><publisher>IEEE</publisher><subject>classification ; Discrete wavelet transforms ; feature extraction ; hyperspectral image ; Hyperspectral imaging ; Image classification ; Local Binary Patterns ; Telecommunications ; Testing ; Training</subject><ispartof>2022 International Symposium on Electronics and Telecommunications (ISETC), 2022, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10009976$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10009976$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Andreia, Miclea</creatorcontrib><creatorcontrib>Terebes, Romulus</creatorcontrib><creatorcontrib>Cislariu, Mihaela</creatorcontrib><title>Hyperspectral Image Classification using Extended Local Binary Patterns and Wavelet Transform Descriptors</title><title>2022 International Symposium on Electronics and Telecommunications (ISETC)</title><addtitle>ISETC</addtitle><description>The performance and accuracy of the hyperspectral image classifier depends on the specific features present in the image as well as the method employed to select the samples used for the learning stage. In this paper, we investigate the use of evolved texture descriptors in a spectral-spatial design for the classification of hyperspectral images. We integrate the Extended Local Binary Pattern operator in a parallel hyperspectral image classification framework chain that uses wavelet descriptors for the spectral dimension. We investigate the benefits of the rich spatial information on the accuracy obtained based on the classification chain, and we show through experimental validation carried out on two open datasets (Salinas and Pavia University) that the performances are improved. The proposed framework with the corresponding methods performs well when evaluated on the two open datasets, by using a random, respectively controlled strategy for selecting the databases for training and testing.</description><subject>classification</subject><subject>Discrete wavelet transforms</subject><subject>feature extraction</subject><subject>hyperspectral image</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Local Binary Patterns</subject><subject>Telecommunications</subject><subject>Testing</subject><subject>Training</subject><issn>2475-7861</issn><isbn>9781665451505</isbn><isbn>1665451505</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kFFLwzAUhaMgOOb-gQ_5A525TdI0jzqnKwwUHPg47tKbEenakkRx_96C-nRePg7fOYxxEEsAYe-at_VupasS5LIUZbkEIYS1prpgC2tqqCqtNGihL9msVEYXpq7gmi1S-phACVYIZWYsbM4jxTSSyxE73pzwSHzVYUrBB4c5DD3_TKE_8vV3pr6llm8HN5EPocd45q-YM8U-cexb_o5f1FHmu4h98kM88UdKLoYxDzHdsCuPXaLFX87Z7mlasCm2L8_N6n5bBGVloaQDY2oS2lhs0VsSDrQvnTsgiAo8-UNpDuClUqpVrq7RVxKVQdTg6lbO2e1vbSCi_RjDadLc_58jfwAiYlva</recordid><startdate>20221110</startdate><enddate>20221110</enddate><creator>Andreia, Miclea</creator><creator>Terebes, Romulus</creator><creator>Cislariu, Mihaela</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20221110</creationdate><title>Hyperspectral Image Classification using Extended Local Binary Patterns and Wavelet Transform Descriptors</title><author>Andreia, Miclea ; Terebes, Romulus ; Cislariu, Mihaela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i493-43c1778e0579adaf9e0c15f2ccba1061fefb27b1f3444d4c88af63a47aa51c8d3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>classification</topic><topic>Discrete wavelet transforms</topic><topic>feature extraction</topic><topic>hyperspectral image</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Local Binary Patterns</topic><topic>Telecommunications</topic><topic>Testing</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Andreia, Miclea</creatorcontrib><creatorcontrib>Terebes, Romulus</creatorcontrib><creatorcontrib>Cislariu, Mihaela</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Andreia, Miclea</au><au>Terebes, Romulus</au><au>Cislariu, Mihaela</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hyperspectral Image Classification using Extended Local Binary Patterns and Wavelet Transform Descriptors</atitle><btitle>2022 International Symposium on Electronics and Telecommunications (ISETC)</btitle><stitle>ISETC</stitle><date>2022-11-10</date><risdate>2022</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2475-7861</eissn><eisbn>9781665451505</eisbn><eisbn>1665451505</eisbn><abstract>The performance and accuracy of the hyperspectral image classifier depends on the specific features present in the image as well as the method employed to select the samples used for the learning stage. In this paper, we investigate the use of evolved texture descriptors in a spectral-spatial design for the classification of hyperspectral images. We integrate the Extended Local Binary Pattern operator in a parallel hyperspectral image classification framework chain that uses wavelet descriptors for the spectral dimension. We investigate the benefits of the rich spatial information on the accuracy obtained based on the classification chain, and we show through experimental validation carried out on two open datasets (Salinas and Pavia University) that the performances are improved. The proposed framework with the corresponding methods performs well when evaluated on the two open datasets, by using a random, respectively controlled strategy for selecting the databases for training and testing.</abstract><pub>IEEE</pub><doi>10.1109/ISETC56213.2022.10009976</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2475-7861
ispartof 2022 International Symposium on Electronics and Telecommunications (ISETC), 2022, p.1-4
issn 2475-7861
language eng
recordid cdi_ieee_primary_10009976
source IEEE Xplore All Conference Series
subjects classification
Discrete wavelet transforms
feature extraction
hyperspectral image
Hyperspectral imaging
Image classification
Local Binary Patterns
Telecommunications
Testing
Training
title Hyperspectral Image Classification using Extended Local Binary Patterns and Wavelet Transform Descriptors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T18%3A07%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hyperspectral%20Image%20Classification%20using%20Extended%20Local%20Binary%20Patterns%20and%20Wavelet%20Transform%20Descriptors&rft.btitle=2022%20International%20Symposium%20on%20Electronics%20and%20Telecommunications%20(ISETC)&rft.au=Andreia,%20Miclea&rft.date=2022-11-10&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2475-7861&rft_id=info:doi/10.1109/ISETC56213.2022.10009976&rft.eisbn=9781665451505&rft.eisbn_list=1665451505&rft_dat=%3Cieee_CHZPO%3E10009976%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i493-43c1778e0579adaf9e0c15f2ccba1061fefb27b1f3444d4c88af63a47aa51c8d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10009976&rfr_iscdi=true