Loading…
Sublessor: A Cost-Saving Internet Transit Mechanism for Cooperative MEC Providers in Industrial Internet of Things
Mobile edge computing (MEC) is becoming increasingly popular due to its remarkable computing capacities in close proximity to end users or devices. With the widespread use of Industrial Internet of Things, more and more cloud service providers move their services to the edge of the network for a bet...
Saved in:
Published in: | IEEE transactions on industrial informatics 2023-09, Vol.19 (9), p.1-12 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c245t-bd4eaef248ded91fa38c57257ae9cd8795e22e0f4b0d341ebc8106a9ad0589eb3 |
container_end_page | 12 |
container_issue | 9 |
container_start_page | 1 |
container_title | IEEE transactions on industrial informatics |
container_volume | 19 |
creator | Chen, Sheng Zhang, Qihang Dong, Xiaodong Tao, Xiaoyi Li, Keqiu Qiu, Tie Lee, Ivan |
description | Mobile edge computing (MEC) is becoming increasingly popular due to its remarkable computing capacities in close proximity to end users or devices. With the widespread use of Industrial Internet of Things, more and more cloud service providers move their services to the edge of the network for a better quality of service and become MEC providers. These MEC providers require to rent wide area network (WAN) connections to transfer industrial data, which is a considerable expense. In this article, we propose a framework called Sublessor to reduce the WAN transmission cost for a group of cooperative MEC providers. The key idea of Sublessor is allowing some specific MEC providers to act as Internet transit brokers, transmitting not only their own network traffic but also the traffic of their partners under a reasonable reselling price. This article formulates the problem as a mixed integer programming and finds the most suitable broker number and corresponding reselling price without damaging the profit of both brokers and partners by a deep-reinforcement-learning-based algorithm. Experimental results show that our algorithm can significantly reduce the traffic transmission cost by up to 35%. |
doi_str_mv | 10.1109/TII.2022.3230689 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10018498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10018498</ieee_id><sourcerecordid>2842168266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-bd4eaef248ded91fa38c57257ae9cd8795e22e0f4b0d341ebc8106a9ad0589eb3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AURYMoWKt7Fy4GXKe--Ugy466EqoUWhcb1MEle7JQ2U2eSgv_elBZ09e7i3PvgRNE9hQmloJ6K-XzCgLEJZxxSqS6iEVWCxgAJXA45SWjMGfDr6CaEDQDPgKtR5Fd9ucUQnH8mU5K70MUrc7DtF5m3HfoWO1J40wbbkSVWa9PasCON8wPq9uhNZw9IlrOcfHh3sDX6QGw7dOs-dN6a7d-Ma0ixHobDbXTVmG3Au_MdR58vsyJ_ixfvr_N8uogrJpIuLmuBBhsmZI21oo3hskoylmQGVVXLTCXIGEIjSqi5oFhWkkJqlKkhkQpLPo4eT7t77757DJ3euN63w0vNpGA0lSxNBwpOVOVdCB4bvfd2Z_yPpqCPZvVgVh_N6rPZofJwqlhE_IcDlUJJ_gsHf3X2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842168266</pqid></control><display><type>article</type><title>Sublessor: A Cost-Saving Internet Transit Mechanism for Cooperative MEC Providers in Industrial Internet of Things</title><source>IEEE Xplore (Online service)</source><creator>Chen, Sheng ; Zhang, Qihang ; Dong, Xiaodong ; Tao, Xiaoyi ; Li, Keqiu ; Qiu, Tie ; Lee, Ivan</creator><creatorcontrib>Chen, Sheng ; Zhang, Qihang ; Dong, Xiaodong ; Tao, Xiaoyi ; Li, Keqiu ; Qiu, Tie ; Lee, Ivan</creatorcontrib><description>Mobile edge computing (MEC) is becoming increasingly popular due to its remarkable computing capacities in close proximity to end users or devices. With the widespread use of Industrial Internet of Things, more and more cloud service providers move their services to the edge of the network for a better quality of service and become MEC providers. These MEC providers require to rent wide area network (WAN) connections to transfer industrial data, which is a considerable expense. In this article, we propose a framework called Sublessor to reduce the WAN transmission cost for a group of cooperative MEC providers. The key idea of Sublessor is allowing some specific MEC providers to act as Internet transit brokers, transmitting not only their own network traffic but also the traffic of their partners under a reasonable reselling price. This article formulates the problem as a mixed integer programming and finds the most suitable broker number and corresponding reselling price without damaging the profit of both brokers and partners by a deep-reinforcement-learning-based algorithm. Experimental results show that our algorithm can significantly reduce the traffic transmission cost by up to 35%.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2022.3230689</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cloud computing ; Communications traffic ; Costs ; Deep reinforcement learning (DRL) ; Edge computing ; End users ; Industrial applications ; Industrial Internet of Things ; industrial internet of things (IIoT) ; Integer programming ; Internet ; Internet of Things ; internet transit pricing ; Machine learning ; Mixed integer ; Mobile computing ; mobile edge computing (MEC) ; Pricing ; Quality of service architectures ; Reinforcement learning ; Wide area networks</subject><ispartof>IEEE transactions on industrial informatics, 2023-09, Vol.19 (9), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-bd4eaef248ded91fa38c57257ae9cd8795e22e0f4b0d341ebc8106a9ad0589eb3</cites><orcidid>0000-0003-1758-3030 ; 0000-0002-9254-3963 ; 0000-0001-7038-4407 ; 0000-0001-5374-2196 ; 0000-0002-2826-6367 ; 0000-0003-2324-2523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10018498$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chen, Sheng</creatorcontrib><creatorcontrib>Zhang, Qihang</creatorcontrib><creatorcontrib>Dong, Xiaodong</creatorcontrib><creatorcontrib>Tao, Xiaoyi</creatorcontrib><creatorcontrib>Li, Keqiu</creatorcontrib><creatorcontrib>Qiu, Tie</creatorcontrib><creatorcontrib>Lee, Ivan</creatorcontrib><title>Sublessor: A Cost-Saving Internet Transit Mechanism for Cooperative MEC Providers in Industrial Internet of Things</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Mobile edge computing (MEC) is becoming increasingly popular due to its remarkable computing capacities in close proximity to end users or devices. With the widespread use of Industrial Internet of Things, more and more cloud service providers move their services to the edge of the network for a better quality of service and become MEC providers. These MEC providers require to rent wide area network (WAN) connections to transfer industrial data, which is a considerable expense. In this article, we propose a framework called Sublessor to reduce the WAN transmission cost for a group of cooperative MEC providers. The key idea of Sublessor is allowing some specific MEC providers to act as Internet transit brokers, transmitting not only their own network traffic but also the traffic of their partners under a reasonable reselling price. This article formulates the problem as a mixed integer programming and finds the most suitable broker number and corresponding reselling price without damaging the profit of both brokers and partners by a deep-reinforcement-learning-based algorithm. Experimental results show that our algorithm can significantly reduce the traffic transmission cost by up to 35%.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Communications traffic</subject><subject>Costs</subject><subject>Deep reinforcement learning (DRL)</subject><subject>Edge computing</subject><subject>End users</subject><subject>Industrial applications</subject><subject>Industrial Internet of Things</subject><subject>industrial internet of things (IIoT)</subject><subject>Integer programming</subject><subject>Internet</subject><subject>Internet of Things</subject><subject>internet transit pricing</subject><subject>Machine learning</subject><subject>Mixed integer</subject><subject>Mobile computing</subject><subject>mobile edge computing (MEC)</subject><subject>Pricing</subject><subject>Quality of service architectures</subject><subject>Reinforcement learning</subject><subject>Wide area networks</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AURYMoWKt7Fy4GXKe--Ugy466EqoUWhcb1MEle7JQ2U2eSgv_elBZ09e7i3PvgRNE9hQmloJ6K-XzCgLEJZxxSqS6iEVWCxgAJXA45SWjMGfDr6CaEDQDPgKtR5Fd9ucUQnH8mU5K70MUrc7DtF5m3HfoWO1J40wbbkSVWa9PasCON8wPq9uhNZw9IlrOcfHh3sDX6QGw7dOs-dN6a7d-Ma0ixHobDbXTVmG3Au_MdR58vsyJ_ixfvr_N8uogrJpIuLmuBBhsmZI21oo3hskoylmQGVVXLTCXIGEIjSqi5oFhWkkJqlKkhkQpLPo4eT7t77757DJ3euN63w0vNpGA0lSxNBwpOVOVdCB4bvfd2Z_yPpqCPZvVgVh_N6rPZofJwqlhE_IcDlUJJ_gsHf3X2</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Chen, Sheng</creator><creator>Zhang, Qihang</creator><creator>Dong, Xiaodong</creator><creator>Tao, Xiaoyi</creator><creator>Li, Keqiu</creator><creator>Qiu, Tie</creator><creator>Lee, Ivan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1758-3030</orcidid><orcidid>https://orcid.org/0000-0002-9254-3963</orcidid><orcidid>https://orcid.org/0000-0001-7038-4407</orcidid><orcidid>https://orcid.org/0000-0001-5374-2196</orcidid><orcidid>https://orcid.org/0000-0002-2826-6367</orcidid><orcidid>https://orcid.org/0000-0003-2324-2523</orcidid></search><sort><creationdate>20230901</creationdate><title>Sublessor: A Cost-Saving Internet Transit Mechanism for Cooperative MEC Providers in Industrial Internet of Things</title><author>Chen, Sheng ; Zhang, Qihang ; Dong, Xiaodong ; Tao, Xiaoyi ; Li, Keqiu ; Qiu, Tie ; Lee, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-bd4eaef248ded91fa38c57257ae9cd8795e22e0f4b0d341ebc8106a9ad0589eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Communications traffic</topic><topic>Costs</topic><topic>Deep reinforcement learning (DRL)</topic><topic>Edge computing</topic><topic>End users</topic><topic>Industrial applications</topic><topic>Industrial Internet of Things</topic><topic>industrial internet of things (IIoT)</topic><topic>Integer programming</topic><topic>Internet</topic><topic>Internet of Things</topic><topic>internet transit pricing</topic><topic>Machine learning</topic><topic>Mixed integer</topic><topic>Mobile computing</topic><topic>mobile edge computing (MEC)</topic><topic>Pricing</topic><topic>Quality of service architectures</topic><topic>Reinforcement learning</topic><topic>Wide area networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Sheng</creatorcontrib><creatorcontrib>Zhang, Qihang</creatorcontrib><creatorcontrib>Dong, Xiaodong</creatorcontrib><creatorcontrib>Tao, Xiaoyi</creatorcontrib><creatorcontrib>Li, Keqiu</creatorcontrib><creatorcontrib>Qiu, Tie</creatorcontrib><creatorcontrib>Lee, Ivan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Sheng</au><au>Zhang, Qihang</au><au>Dong, Xiaodong</au><au>Tao, Xiaoyi</au><au>Li, Keqiu</au><au>Qiu, Tie</au><au>Lee, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sublessor: A Cost-Saving Internet Transit Mechanism for Cooperative MEC Providers in Industrial Internet of Things</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>19</volume><issue>9</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Mobile edge computing (MEC) is becoming increasingly popular due to its remarkable computing capacities in close proximity to end users or devices. With the widespread use of Industrial Internet of Things, more and more cloud service providers move their services to the edge of the network for a better quality of service and become MEC providers. These MEC providers require to rent wide area network (WAN) connections to transfer industrial data, which is a considerable expense. In this article, we propose a framework called Sublessor to reduce the WAN transmission cost for a group of cooperative MEC providers. The key idea of Sublessor is allowing some specific MEC providers to act as Internet transit brokers, transmitting not only their own network traffic but also the traffic of their partners under a reasonable reselling price. This article formulates the problem as a mixed integer programming and finds the most suitable broker number and corresponding reselling price without damaging the profit of both brokers and partners by a deep-reinforcement-learning-based algorithm. Experimental results show that our algorithm can significantly reduce the traffic transmission cost by up to 35%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2022.3230689</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1758-3030</orcidid><orcidid>https://orcid.org/0000-0002-9254-3963</orcidid><orcidid>https://orcid.org/0000-0001-7038-4407</orcidid><orcidid>https://orcid.org/0000-0001-5374-2196</orcidid><orcidid>https://orcid.org/0000-0002-2826-6367</orcidid><orcidid>https://orcid.org/0000-0003-2324-2523</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1551-3203 |
ispartof | IEEE transactions on industrial informatics, 2023-09, Vol.19 (9), p.1-12 |
issn | 1551-3203 1941-0050 |
language | eng |
recordid | cdi_ieee_primary_10018498 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Cloud computing Communications traffic Costs Deep reinforcement learning (DRL) Edge computing End users Industrial applications Industrial Internet of Things industrial internet of things (IIoT) Integer programming Internet Internet of Things internet transit pricing Machine learning Mixed integer Mobile computing mobile edge computing (MEC) Pricing Quality of service architectures Reinforcement learning Wide area networks |
title | Sublessor: A Cost-Saving Internet Transit Mechanism for Cooperative MEC Providers in Industrial Internet of Things |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sublessor:%20A%20Cost-Saving%20Internet%20Transit%20Mechanism%20for%20Cooperative%20MEC%20Providers%20in%20Industrial%20Internet%20of%20Things&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Chen,%20Sheng&rft.date=2023-09-01&rft.volume=19&rft.issue=9&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2022.3230689&rft_dat=%3Cproquest_ieee_%3E2842168266%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-bd4eaef248ded91fa38c57257ae9cd8795e22e0f4b0d341ebc8106a9ad0589eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2842168266&rft_id=info:pmid/&rft_ieee_id=10018498&rfr_iscdi=true |