Loading…

Sublessor: A Cost-Saving Internet Transit Mechanism for Cooperative MEC Providers in Industrial Internet of Things

Mobile edge computing (MEC) is becoming increasingly popular due to its remarkable computing capacities in close proximity to end users or devices. With the widespread use of Industrial Internet of Things, more and more cloud service providers move their services to the edge of the network for a bet...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial informatics 2023-09, Vol.19 (9), p.1-12
Main Authors: Chen, Sheng, Zhang, Qihang, Dong, Xiaodong, Tao, Xiaoyi, Li, Keqiu, Qiu, Tie, Lee, Ivan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c245t-bd4eaef248ded91fa38c57257ae9cd8795e22e0f4b0d341ebc8106a9ad0589eb3
container_end_page 12
container_issue 9
container_start_page 1
container_title IEEE transactions on industrial informatics
container_volume 19
creator Chen, Sheng
Zhang, Qihang
Dong, Xiaodong
Tao, Xiaoyi
Li, Keqiu
Qiu, Tie
Lee, Ivan
description Mobile edge computing (MEC) is becoming increasingly popular due to its remarkable computing capacities in close proximity to end users or devices. With the widespread use of Industrial Internet of Things, more and more cloud service providers move their services to the edge of the network for a better quality of service and become MEC providers. These MEC providers require to rent wide area network (WAN) connections to transfer industrial data, which is a considerable expense. In this article, we propose a framework called Sublessor to reduce the WAN transmission cost for a group of cooperative MEC providers. The key idea of Sublessor is allowing some specific MEC providers to act as Internet transit brokers, transmitting not only their own network traffic but also the traffic of their partners under a reasonable reselling price. This article formulates the problem as a mixed integer programming and finds the most suitable broker number and corresponding reselling price without damaging the profit of both brokers and partners by a deep-reinforcement-learning-based algorithm. Experimental results show that our algorithm can significantly reduce the traffic transmission cost by up to 35%.
doi_str_mv 10.1109/TII.2022.3230689
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10018498</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10018498</ieee_id><sourcerecordid>2842168266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-bd4eaef248ded91fa38c57257ae9cd8795e22e0f4b0d341ebc8106a9ad0589eb3</originalsourceid><addsrcrecordid>eNpNkE1Lw0AURYMoWKt7Fy4GXKe--Ugy466EqoUWhcb1MEle7JQ2U2eSgv_elBZ09e7i3PvgRNE9hQmloJ6K-XzCgLEJZxxSqS6iEVWCxgAJXA45SWjMGfDr6CaEDQDPgKtR5Fd9ucUQnH8mU5K70MUrc7DtF5m3HfoWO1J40wbbkSVWa9PasCON8wPq9uhNZw9IlrOcfHh3sDX6QGw7dOs-dN6a7d-Ma0ixHobDbXTVmG3Au_MdR58vsyJ_ixfvr_N8uogrJpIuLmuBBhsmZI21oo3hskoylmQGVVXLTCXIGEIjSqi5oFhWkkJqlKkhkQpLPo4eT7t77757DJ3euN63w0vNpGA0lSxNBwpOVOVdCB4bvfd2Z_yPpqCPZvVgVh_N6rPZofJwqlhE_IcDlUJJ_gsHf3X2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2842168266</pqid></control><display><type>article</type><title>Sublessor: A Cost-Saving Internet Transit Mechanism for Cooperative MEC Providers in Industrial Internet of Things</title><source>IEEE Xplore (Online service)</source><creator>Chen, Sheng ; Zhang, Qihang ; Dong, Xiaodong ; Tao, Xiaoyi ; Li, Keqiu ; Qiu, Tie ; Lee, Ivan</creator><creatorcontrib>Chen, Sheng ; Zhang, Qihang ; Dong, Xiaodong ; Tao, Xiaoyi ; Li, Keqiu ; Qiu, Tie ; Lee, Ivan</creatorcontrib><description>Mobile edge computing (MEC) is becoming increasingly popular due to its remarkable computing capacities in close proximity to end users or devices. With the widespread use of Industrial Internet of Things, more and more cloud service providers move their services to the edge of the network for a better quality of service and become MEC providers. These MEC providers require to rent wide area network (WAN) connections to transfer industrial data, which is a considerable expense. In this article, we propose a framework called Sublessor to reduce the WAN transmission cost for a group of cooperative MEC providers. The key idea of Sublessor is allowing some specific MEC providers to act as Internet transit brokers, transmitting not only their own network traffic but also the traffic of their partners under a reasonable reselling price. This article formulates the problem as a mixed integer programming and finds the most suitable broker number and corresponding reselling price without damaging the profit of both brokers and partners by a deep-reinforcement-learning-based algorithm. Experimental results show that our algorithm can significantly reduce the traffic transmission cost by up to 35%.</description><identifier>ISSN: 1551-3203</identifier><identifier>EISSN: 1941-0050</identifier><identifier>DOI: 10.1109/TII.2022.3230689</identifier><identifier>CODEN: ITIICH</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Cloud computing ; Communications traffic ; Costs ; Deep reinforcement learning (DRL) ; Edge computing ; End users ; Industrial applications ; Industrial Internet of Things ; industrial internet of things (IIoT) ; Integer programming ; Internet ; Internet of Things ; internet transit pricing ; Machine learning ; Mixed integer ; Mobile computing ; mobile edge computing (MEC) ; Pricing ; Quality of service architectures ; Reinforcement learning ; Wide area networks</subject><ispartof>IEEE transactions on industrial informatics, 2023-09, Vol.19 (9), p.1-12</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-bd4eaef248ded91fa38c57257ae9cd8795e22e0f4b0d341ebc8106a9ad0589eb3</cites><orcidid>0000-0003-1758-3030 ; 0000-0002-9254-3963 ; 0000-0001-7038-4407 ; 0000-0001-5374-2196 ; 0000-0002-2826-6367 ; 0000-0003-2324-2523</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10018498$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Chen, Sheng</creatorcontrib><creatorcontrib>Zhang, Qihang</creatorcontrib><creatorcontrib>Dong, Xiaodong</creatorcontrib><creatorcontrib>Tao, Xiaoyi</creatorcontrib><creatorcontrib>Li, Keqiu</creatorcontrib><creatorcontrib>Qiu, Tie</creatorcontrib><creatorcontrib>Lee, Ivan</creatorcontrib><title>Sublessor: A Cost-Saving Internet Transit Mechanism for Cooperative MEC Providers in Industrial Internet of Things</title><title>IEEE transactions on industrial informatics</title><addtitle>TII</addtitle><description>Mobile edge computing (MEC) is becoming increasingly popular due to its remarkable computing capacities in close proximity to end users or devices. With the widespread use of Industrial Internet of Things, more and more cloud service providers move their services to the edge of the network for a better quality of service and become MEC providers. These MEC providers require to rent wide area network (WAN) connections to transfer industrial data, which is a considerable expense. In this article, we propose a framework called Sublessor to reduce the WAN transmission cost for a group of cooperative MEC providers. The key idea of Sublessor is allowing some specific MEC providers to act as Internet transit brokers, transmitting not only their own network traffic but also the traffic of their partners under a reasonable reselling price. This article formulates the problem as a mixed integer programming and finds the most suitable broker number and corresponding reselling price without damaging the profit of both brokers and partners by a deep-reinforcement-learning-based algorithm. Experimental results show that our algorithm can significantly reduce the traffic transmission cost by up to 35%.</description><subject>Algorithms</subject><subject>Cloud computing</subject><subject>Communications traffic</subject><subject>Costs</subject><subject>Deep reinforcement learning (DRL)</subject><subject>Edge computing</subject><subject>End users</subject><subject>Industrial applications</subject><subject>Industrial Internet of Things</subject><subject>industrial internet of things (IIoT)</subject><subject>Integer programming</subject><subject>Internet</subject><subject>Internet of Things</subject><subject>internet transit pricing</subject><subject>Machine learning</subject><subject>Mixed integer</subject><subject>Mobile computing</subject><subject>mobile edge computing (MEC)</subject><subject>Pricing</subject><subject>Quality of service architectures</subject><subject>Reinforcement learning</subject><subject>Wide area networks</subject><issn>1551-3203</issn><issn>1941-0050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkE1Lw0AURYMoWKt7Fy4GXKe--Ugy466EqoUWhcb1MEle7JQ2U2eSgv_elBZ09e7i3PvgRNE9hQmloJ6K-XzCgLEJZxxSqS6iEVWCxgAJXA45SWjMGfDr6CaEDQDPgKtR5Fd9ucUQnH8mU5K70MUrc7DtF5m3HfoWO1J40wbbkSVWa9PasCON8wPq9uhNZw9IlrOcfHh3sDX6QGw7dOs-dN6a7d-Ma0ixHobDbXTVmG3Au_MdR58vsyJ_ixfvr_N8uogrJpIuLmuBBhsmZI21oo3hskoylmQGVVXLTCXIGEIjSqi5oFhWkkJqlKkhkQpLPo4eT7t77757DJ3euN63w0vNpGA0lSxNBwpOVOVdCB4bvfd2Z_yPpqCPZvVgVh_N6rPZofJwqlhE_IcDlUJJ_gsHf3X2</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Chen, Sheng</creator><creator>Zhang, Qihang</creator><creator>Dong, Xiaodong</creator><creator>Tao, Xiaoyi</creator><creator>Li, Keqiu</creator><creator>Qiu, Tie</creator><creator>Lee, Ivan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1758-3030</orcidid><orcidid>https://orcid.org/0000-0002-9254-3963</orcidid><orcidid>https://orcid.org/0000-0001-7038-4407</orcidid><orcidid>https://orcid.org/0000-0001-5374-2196</orcidid><orcidid>https://orcid.org/0000-0002-2826-6367</orcidid><orcidid>https://orcid.org/0000-0003-2324-2523</orcidid></search><sort><creationdate>20230901</creationdate><title>Sublessor: A Cost-Saving Internet Transit Mechanism for Cooperative MEC Providers in Industrial Internet of Things</title><author>Chen, Sheng ; Zhang, Qihang ; Dong, Xiaodong ; Tao, Xiaoyi ; Li, Keqiu ; Qiu, Tie ; Lee, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-bd4eaef248ded91fa38c57257ae9cd8795e22e0f4b0d341ebc8106a9ad0589eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Cloud computing</topic><topic>Communications traffic</topic><topic>Costs</topic><topic>Deep reinforcement learning (DRL)</topic><topic>Edge computing</topic><topic>End users</topic><topic>Industrial applications</topic><topic>Industrial Internet of Things</topic><topic>industrial internet of things (IIoT)</topic><topic>Integer programming</topic><topic>Internet</topic><topic>Internet of Things</topic><topic>internet transit pricing</topic><topic>Machine learning</topic><topic>Mixed integer</topic><topic>Mobile computing</topic><topic>mobile edge computing (MEC)</topic><topic>Pricing</topic><topic>Quality of service architectures</topic><topic>Reinforcement learning</topic><topic>Wide area networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Sheng</creatorcontrib><creatorcontrib>Zhang, Qihang</creatorcontrib><creatorcontrib>Dong, Xiaodong</creatorcontrib><creatorcontrib>Tao, Xiaoyi</creatorcontrib><creatorcontrib>Li, Keqiu</creatorcontrib><creatorcontrib>Qiu, Tie</creatorcontrib><creatorcontrib>Lee, Ivan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on industrial informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Sheng</au><au>Zhang, Qihang</au><au>Dong, Xiaodong</au><au>Tao, Xiaoyi</au><au>Li, Keqiu</au><au>Qiu, Tie</au><au>Lee, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sublessor: A Cost-Saving Internet Transit Mechanism for Cooperative MEC Providers in Industrial Internet of Things</atitle><jtitle>IEEE transactions on industrial informatics</jtitle><stitle>TII</stitle><date>2023-09-01</date><risdate>2023</risdate><volume>19</volume><issue>9</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>1551-3203</issn><eissn>1941-0050</eissn><coden>ITIICH</coden><abstract>Mobile edge computing (MEC) is becoming increasingly popular due to its remarkable computing capacities in close proximity to end users or devices. With the widespread use of Industrial Internet of Things, more and more cloud service providers move their services to the edge of the network for a better quality of service and become MEC providers. These MEC providers require to rent wide area network (WAN) connections to transfer industrial data, which is a considerable expense. In this article, we propose a framework called Sublessor to reduce the WAN transmission cost for a group of cooperative MEC providers. The key idea of Sublessor is allowing some specific MEC providers to act as Internet transit brokers, transmitting not only their own network traffic but also the traffic of their partners under a reasonable reselling price. This article formulates the problem as a mixed integer programming and finds the most suitable broker number and corresponding reselling price without damaging the profit of both brokers and partners by a deep-reinforcement-learning-based algorithm. Experimental results show that our algorithm can significantly reduce the traffic transmission cost by up to 35%.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TII.2022.3230689</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1758-3030</orcidid><orcidid>https://orcid.org/0000-0002-9254-3963</orcidid><orcidid>https://orcid.org/0000-0001-7038-4407</orcidid><orcidid>https://orcid.org/0000-0001-5374-2196</orcidid><orcidid>https://orcid.org/0000-0002-2826-6367</orcidid><orcidid>https://orcid.org/0000-0003-2324-2523</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1551-3203
ispartof IEEE transactions on industrial informatics, 2023-09, Vol.19 (9), p.1-12
issn 1551-3203
1941-0050
language eng
recordid cdi_ieee_primary_10018498
source IEEE Xplore (Online service)
subjects Algorithms
Cloud computing
Communications traffic
Costs
Deep reinforcement learning (DRL)
Edge computing
End users
Industrial applications
Industrial Internet of Things
industrial internet of things (IIoT)
Integer programming
Internet
Internet of Things
internet transit pricing
Machine learning
Mixed integer
Mobile computing
mobile edge computing (MEC)
Pricing
Quality of service architectures
Reinforcement learning
Wide area networks
title Sublessor: A Cost-Saving Internet Transit Mechanism for Cooperative MEC Providers in Industrial Internet of Things
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T13%3A19%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sublessor:%20A%20Cost-Saving%20Internet%20Transit%20Mechanism%20for%20Cooperative%20MEC%20Providers%20in%20Industrial%20Internet%20of%20Things&rft.jtitle=IEEE%20transactions%20on%20industrial%20informatics&rft.au=Chen,%20Sheng&rft.date=2023-09-01&rft.volume=19&rft.issue=9&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=1551-3203&rft.eissn=1941-0050&rft.coden=ITIICH&rft_id=info:doi/10.1109/TII.2022.3230689&rft_dat=%3Cproquest_ieee_%3E2842168266%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c245t-bd4eaef248ded91fa38c57257ae9cd8795e22e0f4b0d341ebc8106a9ad0589eb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2842168266&rft_id=info:pmid/&rft_ieee_id=10018498&rfr_iscdi=true