Loading…
Socio-cognitive Optimization of Time-delay Control Problems using Agent-based Metaheuristics
Following the introduction of the socio-cognitive caste-based algorithms into the classic evolutionary metaheuristics, in this paper we focus on similar task regarding agent-based universal optimization methods. We tackle EMAS and DE algorithms and enrich them also with TOPSIS-inspired mechanism. Be...
Saved in:
Main Authors: | , , , , , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 7 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Nabywaniec, Mateusz Guzowski, Hubert Urbanczyk, Aleksandra Smolka, Maciej Kisiel-Dorohinicki, Marek Byrski, Aleksander Oplatkova, Zuzana Kominkova Senkerik, Roman Pekar, Libor Matusu, Radek Gazdos, Frantisek |
description | Following the introduction of the socio-cognitive caste-based algorithms into the classic evolutionary metaheuristics, in this paper we focus on similar task regarding agent-based universal optimization methods. We tackle EMAS and DE algorithms and enrich them also with TOPSIS-inspired mechanism. Besides giving the details of the methods and the background, we present preliminary results after applying those techniques to solving the problem of optimization of time-delay system model. |
doi_str_mv | 10.1109/IS57118.2022.10019693 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10019693</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10019693</ieee_id><sourcerecordid>10019693</sourcerecordid><originalsourceid>FETCH-LOGICAL-i498-b2bb4c88752910b589027249c377bf0bf5b6ef3c90fad611a4192c27a2626c1f3</originalsourceid><addsrcrecordid>eNo10MtKAzEUgOEoCBbtGyjkBVJzzkxuy1K8FCoV2qVQkjSpkZlJmaRCfXoX6urffYufkHvgMwBuHpYboQD0DDniDDgHI01zQaZGaZBStEIKiZdkgkoqZjTHazIt5ZNz3iBvAWFC3jfZp8x8Pgyppq9A18ea-vRta8oDzZFuUx_YPnT2TBd5qGPu6NuYXRf6Qk8lDQc6P4ShMmdL2NPXUO1HOI2p1OTLLbmKtith-tcbsn163C5e2Gr9vFzMVyy1RjOHzrVeayXQAHdCG44KW-MbpVzkLgonQ2y84dHuJYBtwaBHZVGi9BCbG3L3y6YQwu44pt6O593_j-YHl2lU9w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Socio-cognitive Optimization of Time-delay Control Problems using Agent-based Metaheuristics</title><source>IEEE Xplore All Conference Series</source><creator>Nabywaniec, Mateusz ; Guzowski, Hubert ; Urbanczyk, Aleksandra ; Smolka, Maciej ; Kisiel-Dorohinicki, Marek ; Byrski, Aleksander ; Oplatkova, Zuzana Kominkova ; Senkerik, Roman ; Pekar, Libor ; Matusu, Radek ; Gazdos, Frantisek</creator><creatorcontrib>Nabywaniec, Mateusz ; Guzowski, Hubert ; Urbanczyk, Aleksandra ; Smolka, Maciej ; Kisiel-Dorohinicki, Marek ; Byrski, Aleksander ; Oplatkova, Zuzana Kominkova ; Senkerik, Roman ; Pekar, Libor ; Matusu, Radek ; Gazdos, Frantisek</creatorcontrib><description>Following the introduction of the socio-cognitive caste-based algorithms into the classic evolutionary metaheuristics, in this paper we focus on similar task regarding agent-based universal optimization methods. We tackle EMAS and DE algorithms and enrich them also with TOPSIS-inspired mechanism. Besides giving the details of the methods and the background, we present preliminary results after applying those techniques to solving the problem of optimization of time-delay system model.</description><identifier>EISSN: 2767-9802</identifier><identifier>EISBN: 9781665456562</identifier><identifier>EISBN: 1665456566</identifier><identifier>DOI: 10.1109/IS57118.2022.10019693</identifier><language>eng</language><publisher>IEEE</publisher><subject>agent-based computing ; hybrid metaheuristics ; Intelligent systems ; Metaheuristics ; Optimization methods ; socio-cognitive computing ; Task analysis</subject><ispartof>2022 IEEE 11th International Conference on Intelligent Systems (IS), 2022, p.1-7</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10019693$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10019693$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nabywaniec, Mateusz</creatorcontrib><creatorcontrib>Guzowski, Hubert</creatorcontrib><creatorcontrib>Urbanczyk, Aleksandra</creatorcontrib><creatorcontrib>Smolka, Maciej</creatorcontrib><creatorcontrib>Kisiel-Dorohinicki, Marek</creatorcontrib><creatorcontrib>Byrski, Aleksander</creatorcontrib><creatorcontrib>Oplatkova, Zuzana Kominkova</creatorcontrib><creatorcontrib>Senkerik, Roman</creatorcontrib><creatorcontrib>Pekar, Libor</creatorcontrib><creatorcontrib>Matusu, Radek</creatorcontrib><creatorcontrib>Gazdos, Frantisek</creatorcontrib><title>Socio-cognitive Optimization of Time-delay Control Problems using Agent-based Metaheuristics</title><title>2022 IEEE 11th International Conference on Intelligent Systems (IS)</title><addtitle>IS</addtitle><description>Following the introduction of the socio-cognitive caste-based algorithms into the classic evolutionary metaheuristics, in this paper we focus on similar task regarding agent-based universal optimization methods. We tackle EMAS and DE algorithms and enrich them also with TOPSIS-inspired mechanism. Besides giving the details of the methods and the background, we present preliminary results after applying those techniques to solving the problem of optimization of time-delay system model.</description><subject>agent-based computing</subject><subject>hybrid metaheuristics</subject><subject>Intelligent systems</subject><subject>Metaheuristics</subject><subject>Optimization methods</subject><subject>socio-cognitive computing</subject><subject>Task analysis</subject><issn>2767-9802</issn><isbn>9781665456562</isbn><isbn>1665456566</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo10MtKAzEUgOEoCBbtGyjkBVJzzkxuy1K8FCoV2qVQkjSpkZlJmaRCfXoX6urffYufkHvgMwBuHpYboQD0DDniDDgHI01zQaZGaZBStEIKiZdkgkoqZjTHazIt5ZNz3iBvAWFC3jfZp8x8Pgyppq9A18ea-vRta8oDzZFuUx_YPnT2TBd5qGPu6NuYXRf6Qk8lDQc6P4ShMmdL2NPXUO1HOI2p1OTLLbmKtith-tcbsn163C5e2Gr9vFzMVyy1RjOHzrVeayXQAHdCG44KW-MbpVzkLgonQ2y84dHuJYBtwaBHZVGi9BCbG3L3y6YQwu44pt6O593_j-YHl2lU9w</recordid><startdate>20221012</startdate><enddate>20221012</enddate><creator>Nabywaniec, Mateusz</creator><creator>Guzowski, Hubert</creator><creator>Urbanczyk, Aleksandra</creator><creator>Smolka, Maciej</creator><creator>Kisiel-Dorohinicki, Marek</creator><creator>Byrski, Aleksander</creator><creator>Oplatkova, Zuzana Kominkova</creator><creator>Senkerik, Roman</creator><creator>Pekar, Libor</creator><creator>Matusu, Radek</creator><creator>Gazdos, Frantisek</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20221012</creationdate><title>Socio-cognitive Optimization of Time-delay Control Problems using Agent-based Metaheuristics</title><author>Nabywaniec, Mateusz ; Guzowski, Hubert ; Urbanczyk, Aleksandra ; Smolka, Maciej ; Kisiel-Dorohinicki, Marek ; Byrski, Aleksander ; Oplatkova, Zuzana Kominkova ; Senkerik, Roman ; Pekar, Libor ; Matusu, Radek ; Gazdos, Frantisek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i498-b2bb4c88752910b589027249c377bf0bf5b6ef3c90fad611a4192c27a2626c1f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>agent-based computing</topic><topic>hybrid metaheuristics</topic><topic>Intelligent systems</topic><topic>Metaheuristics</topic><topic>Optimization methods</topic><topic>socio-cognitive computing</topic><topic>Task analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Nabywaniec, Mateusz</creatorcontrib><creatorcontrib>Guzowski, Hubert</creatorcontrib><creatorcontrib>Urbanczyk, Aleksandra</creatorcontrib><creatorcontrib>Smolka, Maciej</creatorcontrib><creatorcontrib>Kisiel-Dorohinicki, Marek</creatorcontrib><creatorcontrib>Byrski, Aleksander</creatorcontrib><creatorcontrib>Oplatkova, Zuzana Kominkova</creatorcontrib><creatorcontrib>Senkerik, Roman</creatorcontrib><creatorcontrib>Pekar, Libor</creatorcontrib><creatorcontrib>Matusu, Radek</creatorcontrib><creatorcontrib>Gazdos, Frantisek</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nabywaniec, Mateusz</au><au>Guzowski, Hubert</au><au>Urbanczyk, Aleksandra</au><au>Smolka, Maciej</au><au>Kisiel-Dorohinicki, Marek</au><au>Byrski, Aleksander</au><au>Oplatkova, Zuzana Kominkova</au><au>Senkerik, Roman</au><au>Pekar, Libor</au><au>Matusu, Radek</au><au>Gazdos, Frantisek</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Socio-cognitive Optimization of Time-delay Control Problems using Agent-based Metaheuristics</atitle><btitle>2022 IEEE 11th International Conference on Intelligent Systems (IS)</btitle><stitle>IS</stitle><date>2022-10-12</date><risdate>2022</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><eissn>2767-9802</eissn><eisbn>9781665456562</eisbn><eisbn>1665456566</eisbn><abstract>Following the introduction of the socio-cognitive caste-based algorithms into the classic evolutionary metaheuristics, in this paper we focus on similar task regarding agent-based universal optimization methods. We tackle EMAS and DE algorithms and enrich them also with TOPSIS-inspired mechanism. Besides giving the details of the methods and the background, we present preliminary results after applying those techniques to solving the problem of optimization of time-delay system model.</abstract><pub>IEEE</pub><doi>10.1109/IS57118.2022.10019693</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2767-9802 |
ispartof | 2022 IEEE 11th International Conference on Intelligent Systems (IS), 2022, p.1-7 |
issn | 2767-9802 |
language | eng |
recordid | cdi_ieee_primary_10019693 |
source | IEEE Xplore All Conference Series |
subjects | agent-based computing hybrid metaheuristics Intelligent systems Metaheuristics Optimization methods socio-cognitive computing Task analysis |
title | Socio-cognitive Optimization of Time-delay Control Problems using Agent-based Metaheuristics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A07%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Socio-cognitive%20Optimization%20of%20Time-delay%20Control%20Problems%20using%20Agent-based%20Metaheuristics&rft.btitle=2022%20IEEE%2011th%20International%20Conference%20on%20Intelligent%20Systems%20(IS)&rft.au=Nabywaniec,%20Mateusz&rft.date=2022-10-12&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.eissn=2767-9802&rft_id=info:doi/10.1109/IS57118.2022.10019693&rft.eisbn=9781665456562&rft.eisbn_list=1665456566&rft_dat=%3Cieee_CHZPO%3E10019693%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i498-b2bb4c88752910b589027249c377bf0bf5b6ef3c90fad611a4192c27a2626c1f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10019693&rfr_iscdi=true |