Loading…

Cross-domain Few-shot Hyperspectral Image Classification With Class-wise Attention

Few-shot learning (FSL) is an effective method to solve the problem of hyperspectral image classification with few labeled samples. It learns transferable knowledge from sufficient labeled auxiliary data to classify unseen classes with limited labeled samples for training. However, the distribution...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1
Main Authors: Wang, Wenzhen, Liu, Fang, Liu, Jia, Xiao, Liang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-3e943ac2efc71a83a933badb537a85db745935cbf154eacc662071cd616411633
cites cdi_FETCH-LOGICAL-c294t-3e943ac2efc71a83a933badb537a85db745935cbf154eacc662071cd616411633
container_end_page 1
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 61
creator Wang, Wenzhen
Liu, Fang
Liu, Jia
Xiao, Liang
description Few-shot learning (FSL) is an effective method to solve the problem of hyperspectral image classification with few labeled samples. It learns transferable knowledge from sufficient labeled auxiliary data to classify unseen classes with limited labeled samples for training. However, the distribution difference between auxiliary data and unseen classes results in the learned transferable knowledge not being well applied to the new task. Therefore, a class-wise attentive cross-domain few-shot learning (CA-CFSL) framework is proposed in this paper, in which a feature extractor is learned to extract data features with discriminability and domain invariance. The class-wise attention metric module (CAMM) introduces a class-wise attention on the FSL framework to learn more discriminative features, which improves the inter-class decision boundaries. Furthermore, an asymmetric domain adversarial module (ADAM) is designed to enhance the ability of extracting domain invariant representations, which combines asymmetric adversarial training with embedded domain-specific information. Experimental results on four public hyperspectral image datasets demonstrate that the proposed method outperforms existing methods.
doi_str_mv 10.1109/TGRS.2023.3239411
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10025014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10025014</ieee_id><sourcerecordid>2773454349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-3e943ac2efc71a83a933badb537a85db745935cbf154eacc662071cd616411633</originalsourceid><addsrcrecordid>eNpNkEtrwzAQhEVpoWnaH1DowdCzUq0etnUMoXlAoJCm9ChkWW4UEtuVFEL-fW2cQ08LszO7zIfQM5AJAJFv28Xmc0IJZRNGmeQAN2gEQuSYpJzfohEBmWKaS3qPHkLYEwJcQDZCm5lvQsBlc9SuTub2jMOuicny0lofWmui14dkddQ_NpkddAiuckZH19TJt4u7QcNnF2wyjdHW_eYR3VX6EOzTdY7R1_x9O1vi9cdiNZuusaGSR8ys5EwbaiuTgc6ZlowVuiwEy3QuyiLjQjJhigoEt9qYNKUkA1OmkHb1UsbG6HW42_rm92RDVPvm5OvupaJZxrjgjMvOBYPL9EW9rVTr3VH7iwKienSqR6d6dOqKrsu8DBlnrf3nJ1R03NgfzNJqew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773454349</pqid></control><display><type>article</type><title>Cross-domain Few-shot Hyperspectral Image Classification With Class-wise Attention</title><source>IEEE Xplore (Online service)</source><creator>Wang, Wenzhen ; Liu, Fang ; Liu, Jia ; Xiao, Liang</creator><creatorcontrib>Wang, Wenzhen ; Liu, Fang ; Liu, Jia ; Xiao, Liang</creatorcontrib><description>Few-shot learning (FSL) is an effective method to solve the problem of hyperspectral image classification with few labeled samples. It learns transferable knowledge from sufficient labeled auxiliary data to classify unseen classes with limited labeled samples for training. However, the distribution difference between auxiliary data and unseen classes results in the learned transferable knowledge not being well applied to the new task. Therefore, a class-wise attentive cross-domain few-shot learning (CA-CFSL) framework is proposed in this paper, in which a feature extractor is learned to extract data features with discriminability and domain invariance. The class-wise attention metric module (CAMM) introduces a class-wise attention on the FSL framework to learn more discriminative features, which improves the inter-class decision boundaries. Furthermore, an asymmetric domain adversarial module (ADAM) is designed to enhance the ability of extracting domain invariant representations, which combines asymmetric adversarial training with embedded domain-specific information. Experimental results on four public hyperspectral image datasets demonstrate that the proposed method outperforms existing methods.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3239411</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymmetry ; class-wise attention ; Classification ; cross-domain ; Data mining ; Feature extraction ; few-shot learning ; hyperspectral image classification ; Hyperspectral imaging ; Image classification ; Measurement ; Methods ; Modules ; Prototypes ; Task analysis ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-3e943ac2efc71a83a933badb537a85db745935cbf154eacc662071cd616411633</citedby><cites>FETCH-LOGICAL-c294t-3e943ac2efc71a83a933badb537a85db745935cbf154eacc662071cd616411633</cites><orcidid>0000-0003-4463-1229 ; 0000-0003-0178-9384 ; 0000-0002-5999-2361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10025014$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wang, Wenzhen</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Xiao, Liang</creatorcontrib><title>Cross-domain Few-shot Hyperspectral Image Classification With Class-wise Attention</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Few-shot learning (FSL) is an effective method to solve the problem of hyperspectral image classification with few labeled samples. It learns transferable knowledge from sufficient labeled auxiliary data to classify unseen classes with limited labeled samples for training. However, the distribution difference between auxiliary data and unseen classes results in the learned transferable knowledge not being well applied to the new task. Therefore, a class-wise attentive cross-domain few-shot learning (CA-CFSL) framework is proposed in this paper, in which a feature extractor is learned to extract data features with discriminability and domain invariance. The class-wise attention metric module (CAMM) introduces a class-wise attention on the FSL framework to learn more discriminative features, which improves the inter-class decision boundaries. Furthermore, an asymmetric domain adversarial module (ADAM) is designed to enhance the ability of extracting domain invariant representations, which combines asymmetric adversarial training with embedded domain-specific information. Experimental results on four public hyperspectral image datasets demonstrate that the proposed method outperforms existing methods.</description><subject>Asymmetry</subject><subject>class-wise attention</subject><subject>Classification</subject><subject>cross-domain</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>few-shot learning</subject><subject>hyperspectral image classification</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Measurement</subject><subject>Methods</subject><subject>Modules</subject><subject>Prototypes</subject><subject>Task analysis</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEtrwzAQhEVpoWnaH1DowdCzUq0etnUMoXlAoJCm9ChkWW4UEtuVFEL-fW2cQ08LszO7zIfQM5AJAJFv28Xmc0IJZRNGmeQAN2gEQuSYpJzfohEBmWKaS3qPHkLYEwJcQDZCm5lvQsBlc9SuTub2jMOuicny0lofWmui14dkddQ_NpkddAiuckZH19TJt4u7QcNnF2wyjdHW_eYR3VX6EOzTdY7R1_x9O1vi9cdiNZuusaGSR8ys5EwbaiuTgc6ZlowVuiwEy3QuyiLjQjJhigoEt9qYNKUkA1OmkHb1UsbG6HW42_rm92RDVPvm5OvupaJZxrjgjMvOBYPL9EW9rVTr3VH7iwKienSqR6d6dOqKrsu8DBlnrf3nJ1R03NgfzNJqew</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Wang, Wenzhen</creator><creator>Liu, Fang</creator><creator>Liu, Jia</creator><creator>Xiao, Liang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4463-1229</orcidid><orcidid>https://orcid.org/0000-0003-0178-9384</orcidid><orcidid>https://orcid.org/0000-0002-5999-2361</orcidid></search><sort><creationdate>20230101</creationdate><title>Cross-domain Few-shot Hyperspectral Image Classification With Class-wise Attention</title><author>Wang, Wenzhen ; Liu, Fang ; Liu, Jia ; Xiao, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-3e943ac2efc71a83a933badb537a85db745935cbf154eacc662071cd616411633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymmetry</topic><topic>class-wise attention</topic><topic>Classification</topic><topic>cross-domain</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>few-shot learning</topic><topic>hyperspectral image classification</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Measurement</topic><topic>Methods</topic><topic>Modules</topic><topic>Prototypes</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wenzhen</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Xiao, Liang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wenzhen</au><au>Liu, Fang</au><au>Liu, Jia</au><au>Xiao, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-domain Few-shot Hyperspectral Image Classification With Class-wise Attention</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Few-shot learning (FSL) is an effective method to solve the problem of hyperspectral image classification with few labeled samples. It learns transferable knowledge from sufficient labeled auxiliary data to classify unseen classes with limited labeled samples for training. However, the distribution difference between auxiliary data and unseen classes results in the learned transferable knowledge not being well applied to the new task. Therefore, a class-wise attentive cross-domain few-shot learning (CA-CFSL) framework is proposed in this paper, in which a feature extractor is learned to extract data features with discriminability and domain invariance. The class-wise attention metric module (CAMM) introduces a class-wise attention on the FSL framework to learn more discriminative features, which improves the inter-class decision boundaries. Furthermore, an asymmetric domain adversarial module (ADAM) is designed to enhance the ability of extracting domain invariant representations, which combines asymmetric adversarial training with embedded domain-specific information. Experimental results on four public hyperspectral image datasets demonstrate that the proposed method outperforms existing methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3239411</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4463-1229</orcidid><orcidid>https://orcid.org/0000-0003-0178-9384</orcidid><orcidid>https://orcid.org/0000-0002-5999-2361</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_10025014
source IEEE Xplore (Online service)
subjects Asymmetry
class-wise attention
Classification
cross-domain
Data mining
Feature extraction
few-shot learning
hyperspectral image classification
Hyperspectral imaging
Image classification
Measurement
Methods
Modules
Prototypes
Task analysis
Training
title Cross-domain Few-shot Hyperspectral Image Classification With Class-wise Attention
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-domain%20Few-shot%20Hyperspectral%20Image%20Classification%20With%20Class-wise%20Attention&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Wang,%20Wenzhen&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3239411&rft_dat=%3Cproquest_ieee_%3E2773454349%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-3e943ac2efc71a83a933badb537a85db745935cbf154eacc662071cd616411633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2773454349&rft_id=info:pmid/&rft_ieee_id=10025014&rfr_iscdi=true