Loading…
Cross-domain Few-shot Hyperspectral Image Classification With Class-wise Attention
Few-shot learning (FSL) is an effective method to solve the problem of hyperspectral image classification with few labeled samples. It learns transferable knowledge from sufficient labeled auxiliary data to classify unseen classes with limited labeled samples for training. However, the distribution...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2023-01, Vol.61, p.1-1 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c294t-3e943ac2efc71a83a933badb537a85db745935cbf154eacc662071cd616411633 |
---|---|
cites | cdi_FETCH-LOGICAL-c294t-3e943ac2efc71a83a933badb537a85db745935cbf154eacc662071cd616411633 |
container_end_page | 1 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 61 |
creator | Wang, Wenzhen Liu, Fang Liu, Jia Xiao, Liang |
description | Few-shot learning (FSL) is an effective method to solve the problem of hyperspectral image classification with few labeled samples. It learns transferable knowledge from sufficient labeled auxiliary data to classify unseen classes with limited labeled samples for training. However, the distribution difference between auxiliary data and unseen classes results in the learned transferable knowledge not being well applied to the new task. Therefore, a class-wise attentive cross-domain few-shot learning (CA-CFSL) framework is proposed in this paper, in which a feature extractor is learned to extract data features with discriminability and domain invariance. The class-wise attention metric module (CAMM) introduces a class-wise attention on the FSL framework to learn more discriminative features, which improves the inter-class decision boundaries. Furthermore, an asymmetric domain adversarial module (ADAM) is designed to enhance the ability of extracting domain invariant representations, which combines asymmetric adversarial training with embedded domain-specific information. Experimental results on four public hyperspectral image datasets demonstrate that the proposed method outperforms existing methods. |
doi_str_mv | 10.1109/TGRS.2023.3239411 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10025014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10025014</ieee_id><sourcerecordid>2773454349</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-3e943ac2efc71a83a933badb537a85db745935cbf154eacc662071cd616411633</originalsourceid><addsrcrecordid>eNpNkEtrwzAQhEVpoWnaH1DowdCzUq0etnUMoXlAoJCm9ChkWW4UEtuVFEL-fW2cQ08LszO7zIfQM5AJAJFv28Xmc0IJZRNGmeQAN2gEQuSYpJzfohEBmWKaS3qPHkLYEwJcQDZCm5lvQsBlc9SuTub2jMOuicny0lofWmui14dkddQ_NpkddAiuckZH19TJt4u7QcNnF2wyjdHW_eYR3VX6EOzTdY7R1_x9O1vi9cdiNZuusaGSR8ys5EwbaiuTgc6ZlowVuiwEy3QuyiLjQjJhigoEt9qYNKUkA1OmkHb1UsbG6HW42_rm92RDVPvm5OvupaJZxrjgjMvOBYPL9EW9rVTr3VH7iwKienSqR6d6dOqKrsu8DBlnrf3nJ1R03NgfzNJqew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2773454349</pqid></control><display><type>article</type><title>Cross-domain Few-shot Hyperspectral Image Classification With Class-wise Attention</title><source>IEEE Xplore (Online service)</source><creator>Wang, Wenzhen ; Liu, Fang ; Liu, Jia ; Xiao, Liang</creator><creatorcontrib>Wang, Wenzhen ; Liu, Fang ; Liu, Jia ; Xiao, Liang</creatorcontrib><description>Few-shot learning (FSL) is an effective method to solve the problem of hyperspectral image classification with few labeled samples. It learns transferable knowledge from sufficient labeled auxiliary data to classify unseen classes with limited labeled samples for training. However, the distribution difference between auxiliary data and unseen classes results in the learned transferable knowledge not being well applied to the new task. Therefore, a class-wise attentive cross-domain few-shot learning (CA-CFSL) framework is proposed in this paper, in which a feature extractor is learned to extract data features with discriminability and domain invariance. The class-wise attention metric module (CAMM) introduces a class-wise attention on the FSL framework to learn more discriminative features, which improves the inter-class decision boundaries. Furthermore, an asymmetric domain adversarial module (ADAM) is designed to enhance the ability of extracting domain invariant representations, which combines asymmetric adversarial training with embedded domain-specific information. Experimental results on four public hyperspectral image datasets demonstrate that the proposed method outperforms existing methods.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2023.3239411</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Asymmetry ; class-wise attention ; Classification ; cross-domain ; Data mining ; Feature extraction ; few-shot learning ; hyperspectral image classification ; Hyperspectral imaging ; Image classification ; Measurement ; Methods ; Modules ; Prototypes ; Task analysis ; Training</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-3e943ac2efc71a83a933badb537a85db745935cbf154eacc662071cd616411633</citedby><cites>FETCH-LOGICAL-c294t-3e943ac2efc71a83a933badb537a85db745935cbf154eacc662071cd616411633</cites><orcidid>0000-0003-4463-1229 ; 0000-0003-0178-9384 ; 0000-0002-5999-2361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10025014$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wang, Wenzhen</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Xiao, Liang</creatorcontrib><title>Cross-domain Few-shot Hyperspectral Image Classification With Class-wise Attention</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Few-shot learning (FSL) is an effective method to solve the problem of hyperspectral image classification with few labeled samples. It learns transferable knowledge from sufficient labeled auxiliary data to classify unseen classes with limited labeled samples for training. However, the distribution difference between auxiliary data and unseen classes results in the learned transferable knowledge not being well applied to the new task. Therefore, a class-wise attentive cross-domain few-shot learning (CA-CFSL) framework is proposed in this paper, in which a feature extractor is learned to extract data features with discriminability and domain invariance. The class-wise attention metric module (CAMM) introduces a class-wise attention on the FSL framework to learn more discriminative features, which improves the inter-class decision boundaries. Furthermore, an asymmetric domain adversarial module (ADAM) is designed to enhance the ability of extracting domain invariant representations, which combines asymmetric adversarial training with embedded domain-specific information. Experimental results on four public hyperspectral image datasets demonstrate that the proposed method outperforms existing methods.</description><subject>Asymmetry</subject><subject>class-wise attention</subject><subject>Classification</subject><subject>cross-domain</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>few-shot learning</subject><subject>hyperspectral image classification</subject><subject>Hyperspectral imaging</subject><subject>Image classification</subject><subject>Measurement</subject><subject>Methods</subject><subject>Modules</subject><subject>Prototypes</subject><subject>Task analysis</subject><subject>Training</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkEtrwzAQhEVpoWnaH1DowdCzUq0etnUMoXlAoJCm9ChkWW4UEtuVFEL-fW2cQ08LszO7zIfQM5AJAJFv28Xmc0IJZRNGmeQAN2gEQuSYpJzfohEBmWKaS3qPHkLYEwJcQDZCm5lvQsBlc9SuTub2jMOuicny0lofWmui14dkddQ_NpkddAiuckZH19TJt4u7QcNnF2wyjdHW_eYR3VX6EOzTdY7R1_x9O1vi9cdiNZuusaGSR8ys5EwbaiuTgc6ZlowVuiwEy3QuyiLjQjJhigoEt9qYNKUkA1OmkHb1UsbG6HW42_rm92RDVPvm5OvupaJZxrjgjMvOBYPL9EW9rVTr3VH7iwKienSqR6d6dOqKrsu8DBlnrf3nJ1R03NgfzNJqew</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Wang, Wenzhen</creator><creator>Liu, Fang</creator><creator>Liu, Jia</creator><creator>Xiao, Liang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4463-1229</orcidid><orcidid>https://orcid.org/0000-0003-0178-9384</orcidid><orcidid>https://orcid.org/0000-0002-5999-2361</orcidid></search><sort><creationdate>20230101</creationdate><title>Cross-domain Few-shot Hyperspectral Image Classification With Class-wise Attention</title><author>Wang, Wenzhen ; Liu, Fang ; Liu, Jia ; Xiao, Liang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-3e943ac2efc71a83a933badb537a85db745935cbf154eacc662071cd616411633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Asymmetry</topic><topic>class-wise attention</topic><topic>Classification</topic><topic>cross-domain</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>few-shot learning</topic><topic>hyperspectral image classification</topic><topic>Hyperspectral imaging</topic><topic>Image classification</topic><topic>Measurement</topic><topic>Methods</topic><topic>Modules</topic><topic>Prototypes</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Wenzhen</creatorcontrib><creatorcontrib>Liu, Fang</creatorcontrib><creatorcontrib>Liu, Jia</creatorcontrib><creatorcontrib>Xiao, Liang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Wenzhen</au><au>Liu, Fang</au><au>Liu, Jia</au><au>Xiao, Liang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cross-domain Few-shot Hyperspectral Image Classification With Class-wise Attention</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>61</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Few-shot learning (FSL) is an effective method to solve the problem of hyperspectral image classification with few labeled samples. It learns transferable knowledge from sufficient labeled auxiliary data to classify unseen classes with limited labeled samples for training. However, the distribution difference between auxiliary data and unseen classes results in the learned transferable knowledge not being well applied to the new task. Therefore, a class-wise attentive cross-domain few-shot learning (CA-CFSL) framework is proposed in this paper, in which a feature extractor is learned to extract data features with discriminability and domain invariance. The class-wise attention metric module (CAMM) introduces a class-wise attention on the FSL framework to learn more discriminative features, which improves the inter-class decision boundaries. Furthermore, an asymmetric domain adversarial module (ADAM) is designed to enhance the ability of extracting domain invariant representations, which combines asymmetric adversarial training with embedded domain-specific information. Experimental results on four public hyperspectral image datasets demonstrate that the proposed method outperforms existing methods.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2023.3239411</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4463-1229</orcidid><orcidid>https://orcid.org/0000-0003-0178-9384</orcidid><orcidid>https://orcid.org/0000-0002-5999-2361</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2023-01, Vol.61, p.1-1 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_10025014 |
source | IEEE Xplore (Online service) |
subjects | Asymmetry class-wise attention Classification cross-domain Data mining Feature extraction few-shot learning hyperspectral image classification Hyperspectral imaging Image classification Measurement Methods Modules Prototypes Task analysis Training |
title | Cross-domain Few-shot Hyperspectral Image Classification With Class-wise Attention |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T11%3A50%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cross-domain%20Few-shot%20Hyperspectral%20Image%20Classification%20With%20Class-wise%20Attention&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Wang,%20Wenzhen&rft.date=2023-01-01&rft.volume=61&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2023.3239411&rft_dat=%3Cproquest_ieee_%3E2773454349%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-3e943ac2efc71a83a933badb537a85db745935cbf154eacc662071cd616411633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2773454349&rft_id=info:pmid/&rft_ieee_id=10025014&rfr_iscdi=true |