Loading…
On Compressive Toeplitz Covariance Sketching
This paper studies the problem of estimating Toeplitz covariance matrices from compressive temporal sketches. In contrast to most existing works on Toeplitz covariance estimation, we simultaneously look at the spatial and temporal sample complexities. To fully exploit the Toeplitz structure, we rely...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 2365 |
container_issue | |
container_start_page | 2361 |
container_title | |
container_volume | |
creator | Lu, Wenzhe Qiao, Heng |
description | This paper studies the problem of estimating Toeplitz covariance matrices from compressive temporal sketches. In contrast to most existing works on Toeplitz covariance estimation, we simultaneously look at the spatial and temporal sample complexities. To fully exploit the Toeplitz structure, we rely on the sparse-array idea to design the spatial samplers. Then we compare the performances of common unbiased estimators, and derive the conditions in terms of the sampler design under which the estimators yield the same MSE. As for the temporal complexity, for the first time in literature, we provide the non-asymptotic guarantee on entry-wise convergence as a function of the MSE, which reveals the trade-off between spatial and temporal complexities. The theoretical claims are demonstrated by the numerical experiments. |
doi_str_mv | 10.1109/Radar53847.2021.10028591 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10028591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10028591</ieee_id><sourcerecordid>10028591</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-b2f01dc64091cda1feab5188ee5aabeabdddfc307b93cacb523639257e60467c3</originalsourceid><addsrcrecordid>eNo1j81Kw0AUhUdBsNa-gYs8gIn3zv8sJfgHhYLWdbmZudHRNg1JKOjTW1BXh_MtzscRokCoECHcPFOiwSivXSVBYoUA0puAJ2IRnEdrjQ4etTwVM2k1lM4pey4uxvEDAJx3eiauV11R73f9wOOYD1ys99xv8_R9hAcaMnWRi5dPnuJ77t4uxVlL25EXfzkXr_d36_qxXK4enurbZZkRw1Q2sgVM8WgMGBNhy9QY9J7ZEDXHklJqowLXBBUpNkYqq4I0ji1o66Kai6vf3czMm37IOxq-Nv_v1A8IzUWP</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On Compressive Toeplitz Covariance Sketching</title><source>IEEE Xplore All Conference Series</source><creator>Lu, Wenzhe ; Qiao, Heng</creator><creatorcontrib>Lu, Wenzhe ; Qiao, Heng</creatorcontrib><description>This paper studies the problem of estimating Toeplitz covariance matrices from compressive temporal sketches. In contrast to most existing works on Toeplitz covariance estimation, we simultaneously look at the spatial and temporal sample complexities. To fully exploit the Toeplitz structure, we rely on the sparse-array idea to design the spatial samplers. Then we compare the performances of common unbiased estimators, and derive the conditions in terms of the sampler design under which the estimators yield the same MSE. As for the temporal complexity, for the first time in literature, we provide the non-asymptotic guarantee on entry-wise convergence as a function of the MSE, which reveals the trade-off between spatial and temporal complexities. The theoretical claims are demonstrated by the numerical experiments.</description><identifier>EISSN: 2640-7736</identifier><identifier>EISBN: 9781665498142</identifier><identifier>EISBN: 1665498145</identifier><identifier>DOI: 10.1109/Radar53847.2021.10028591</identifier><language>eng</language><publisher>IEEE</publisher><subject>Complexity theory ; compressive sketch ; Convergence ; Covariance matrices ; Estimation error ; non-asymptotic guarantee ; Radar ; sparse array ; Toeplitz covariance matrix ; unbiased estimation</subject><ispartof>2021 CIE International Conference on Radar (Radar), 2021, p.2361-2365</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10028591$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27923,54553,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10028591$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu, Wenzhe</creatorcontrib><creatorcontrib>Qiao, Heng</creatorcontrib><title>On Compressive Toeplitz Covariance Sketching</title><title>2021 CIE International Conference on Radar (Radar)</title><addtitle>RADAR</addtitle><description>This paper studies the problem of estimating Toeplitz covariance matrices from compressive temporal sketches. In contrast to most existing works on Toeplitz covariance estimation, we simultaneously look at the spatial and temporal sample complexities. To fully exploit the Toeplitz structure, we rely on the sparse-array idea to design the spatial samplers. Then we compare the performances of common unbiased estimators, and derive the conditions in terms of the sampler design under which the estimators yield the same MSE. As for the temporal complexity, for the first time in literature, we provide the non-asymptotic guarantee on entry-wise convergence as a function of the MSE, which reveals the trade-off between spatial and temporal complexities. The theoretical claims are demonstrated by the numerical experiments.</description><subject>Complexity theory</subject><subject>compressive sketch</subject><subject>Convergence</subject><subject>Covariance matrices</subject><subject>Estimation error</subject><subject>non-asymptotic guarantee</subject><subject>Radar</subject><subject>sparse array</subject><subject>Toeplitz covariance matrix</subject><subject>unbiased estimation</subject><issn>2640-7736</issn><isbn>9781665498142</isbn><isbn>1665498145</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81Kw0AUhUdBsNa-gYs8gIn3zv8sJfgHhYLWdbmZudHRNg1JKOjTW1BXh_MtzscRokCoECHcPFOiwSivXSVBYoUA0puAJ2IRnEdrjQ4etTwVM2k1lM4pey4uxvEDAJx3eiauV11R73f9wOOYD1ys99xv8_R9hAcaMnWRi5dPnuJ77t4uxVlL25EXfzkXr_d36_qxXK4enurbZZkRw1Q2sgVM8WgMGBNhy9QY9J7ZEDXHklJqowLXBBUpNkYqq4I0ji1o66Kai6vf3czMm37IOxq-Nv_v1A8IzUWP</recordid><startdate>20211215</startdate><enddate>20211215</enddate><creator>Lu, Wenzhe</creator><creator>Qiao, Heng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20211215</creationdate><title>On Compressive Toeplitz Covariance Sketching</title><author>Lu, Wenzhe ; Qiao, Heng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-b2f01dc64091cda1feab5188ee5aabeabdddfc307b93cacb523639257e60467c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Complexity theory</topic><topic>compressive sketch</topic><topic>Convergence</topic><topic>Covariance matrices</topic><topic>Estimation error</topic><topic>non-asymptotic guarantee</topic><topic>Radar</topic><topic>sparse array</topic><topic>Toeplitz covariance matrix</topic><topic>unbiased estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Lu, Wenzhe</creatorcontrib><creatorcontrib>Qiao, Heng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Wenzhe</au><au>Qiao, Heng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On Compressive Toeplitz Covariance Sketching</atitle><btitle>2021 CIE International Conference on Radar (Radar)</btitle><stitle>RADAR</stitle><date>2021-12-15</date><risdate>2021</risdate><spage>2361</spage><epage>2365</epage><pages>2361-2365</pages><eissn>2640-7736</eissn><eisbn>9781665498142</eisbn><eisbn>1665498145</eisbn><abstract>This paper studies the problem of estimating Toeplitz covariance matrices from compressive temporal sketches. In contrast to most existing works on Toeplitz covariance estimation, we simultaneously look at the spatial and temporal sample complexities. To fully exploit the Toeplitz structure, we rely on the sparse-array idea to design the spatial samplers. Then we compare the performances of common unbiased estimators, and derive the conditions in terms of the sampler design under which the estimators yield the same MSE. As for the temporal complexity, for the first time in literature, we provide the non-asymptotic guarantee on entry-wise convergence as a function of the MSE, which reveals the trade-off between spatial and temporal complexities. The theoretical claims are demonstrated by the numerical experiments.</abstract><pub>IEEE</pub><doi>10.1109/Radar53847.2021.10028591</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2640-7736 |
ispartof | 2021 CIE International Conference on Radar (Radar), 2021, p.2361-2365 |
issn | 2640-7736 |
language | eng |
recordid | cdi_ieee_primary_10028591 |
source | IEEE Xplore All Conference Series |
subjects | Complexity theory compressive sketch Convergence Covariance matrices Estimation error non-asymptotic guarantee Radar sparse array Toeplitz covariance matrix unbiased estimation |
title | On Compressive Toeplitz Covariance Sketching |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20Compressive%20Toeplitz%20Covariance%20Sketching&rft.btitle=2021%20CIE%20International%20Conference%20on%20Radar%20(Radar)&rft.au=Lu,%20Wenzhe&rft.date=2021-12-15&rft.spage=2361&rft.epage=2365&rft.pages=2361-2365&rft.eissn=2640-7736&rft_id=info:doi/10.1109/Radar53847.2021.10028591&rft.eisbn=9781665498142&rft.eisbn_list=1665498145&rft_dat=%3Cieee_CHZPO%3E10028591%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-b2f01dc64091cda1feab5188ee5aabeabdddfc307b93cacb523639257e60467c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10028591&rfr_iscdi=true |