Loading…

On Compressive Toeplitz Covariance Sketching

This paper studies the problem of estimating Toeplitz covariance matrices from compressive temporal sketches. In contrast to most existing works on Toeplitz covariance estimation, we simultaneously look at the spatial and temporal sample complexities. To fully exploit the Toeplitz structure, we rely...

Full description

Saved in:
Bibliographic Details
Main Authors: Lu, Wenzhe, Qiao, Heng
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2365
container_issue
container_start_page 2361
container_title
container_volume
creator Lu, Wenzhe
Qiao, Heng
description This paper studies the problem of estimating Toeplitz covariance matrices from compressive temporal sketches. In contrast to most existing works on Toeplitz covariance estimation, we simultaneously look at the spatial and temporal sample complexities. To fully exploit the Toeplitz structure, we rely on the sparse-array idea to design the spatial samplers. Then we compare the performances of common unbiased estimators, and derive the conditions in terms of the sampler design under which the estimators yield the same MSE. As for the temporal complexity, for the first time in literature, we provide the non-asymptotic guarantee on entry-wise convergence as a function of the MSE, which reveals the trade-off between spatial and temporal complexities. The theoretical claims are demonstrated by the numerical experiments.
doi_str_mv 10.1109/Radar53847.2021.10028591
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10028591</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10028591</ieee_id><sourcerecordid>10028591</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-b2f01dc64091cda1feab5188ee5aabeabdddfc307b93cacb523639257e60467c3</originalsourceid><addsrcrecordid>eNo1j81Kw0AUhUdBsNa-gYs8gIn3zv8sJfgHhYLWdbmZudHRNg1JKOjTW1BXh_MtzscRokCoECHcPFOiwSivXSVBYoUA0puAJ2IRnEdrjQ4etTwVM2k1lM4pey4uxvEDAJx3eiauV11R73f9wOOYD1ys99xv8_R9hAcaMnWRi5dPnuJ77t4uxVlL25EXfzkXr_d36_qxXK4enurbZZkRw1Q2sgVM8WgMGBNhy9QY9J7ZEDXHklJqowLXBBUpNkYqq4I0ji1o66Kai6vf3czMm37IOxq-Nv_v1A8IzUWP</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>On Compressive Toeplitz Covariance Sketching</title><source>IEEE Xplore All Conference Series</source><creator>Lu, Wenzhe ; Qiao, Heng</creator><creatorcontrib>Lu, Wenzhe ; Qiao, Heng</creatorcontrib><description>This paper studies the problem of estimating Toeplitz covariance matrices from compressive temporal sketches. In contrast to most existing works on Toeplitz covariance estimation, we simultaneously look at the spatial and temporal sample complexities. To fully exploit the Toeplitz structure, we rely on the sparse-array idea to design the spatial samplers. Then we compare the performances of common unbiased estimators, and derive the conditions in terms of the sampler design under which the estimators yield the same MSE. As for the temporal complexity, for the first time in literature, we provide the non-asymptotic guarantee on entry-wise convergence as a function of the MSE, which reveals the trade-off between spatial and temporal complexities. The theoretical claims are demonstrated by the numerical experiments.</description><identifier>EISSN: 2640-7736</identifier><identifier>EISBN: 9781665498142</identifier><identifier>EISBN: 1665498145</identifier><identifier>DOI: 10.1109/Radar53847.2021.10028591</identifier><language>eng</language><publisher>IEEE</publisher><subject>Complexity theory ; compressive sketch ; Convergence ; Covariance matrices ; Estimation error ; non-asymptotic guarantee ; Radar ; sparse array ; Toeplitz covariance matrix ; unbiased estimation</subject><ispartof>2021 CIE International Conference on Radar (Radar), 2021, p.2361-2365</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10028591$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27923,54553,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10028591$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lu, Wenzhe</creatorcontrib><creatorcontrib>Qiao, Heng</creatorcontrib><title>On Compressive Toeplitz Covariance Sketching</title><title>2021 CIE International Conference on Radar (Radar)</title><addtitle>RADAR</addtitle><description>This paper studies the problem of estimating Toeplitz covariance matrices from compressive temporal sketches. In contrast to most existing works on Toeplitz covariance estimation, we simultaneously look at the spatial and temporal sample complexities. To fully exploit the Toeplitz structure, we rely on the sparse-array idea to design the spatial samplers. Then we compare the performances of common unbiased estimators, and derive the conditions in terms of the sampler design under which the estimators yield the same MSE. As for the temporal complexity, for the first time in literature, we provide the non-asymptotic guarantee on entry-wise convergence as a function of the MSE, which reveals the trade-off between spatial and temporal complexities. The theoretical claims are demonstrated by the numerical experiments.</description><subject>Complexity theory</subject><subject>compressive sketch</subject><subject>Convergence</subject><subject>Covariance matrices</subject><subject>Estimation error</subject><subject>non-asymptotic guarantee</subject><subject>Radar</subject><subject>sparse array</subject><subject>Toeplitz covariance matrix</subject><subject>unbiased estimation</subject><issn>2640-7736</issn><isbn>9781665498142</isbn><isbn>1665498145</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j81Kw0AUhUdBsNa-gYs8gIn3zv8sJfgHhYLWdbmZudHRNg1JKOjTW1BXh_MtzscRokCoECHcPFOiwSivXSVBYoUA0puAJ2IRnEdrjQ4etTwVM2k1lM4pey4uxvEDAJx3eiauV11R73f9wOOYD1ys99xv8_R9hAcaMnWRi5dPnuJ77t4uxVlL25EXfzkXr_d36_qxXK4enurbZZkRw1Q2sgVM8WgMGBNhy9QY9J7ZEDXHklJqowLXBBUpNkYqq4I0ji1o66Kai6vf3czMm37IOxq-Nv_v1A8IzUWP</recordid><startdate>20211215</startdate><enddate>20211215</enddate><creator>Lu, Wenzhe</creator><creator>Qiao, Heng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20211215</creationdate><title>On Compressive Toeplitz Covariance Sketching</title><author>Lu, Wenzhe ; Qiao, Heng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-b2f01dc64091cda1feab5188ee5aabeabdddfc307b93cacb523639257e60467c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Complexity theory</topic><topic>compressive sketch</topic><topic>Convergence</topic><topic>Covariance matrices</topic><topic>Estimation error</topic><topic>non-asymptotic guarantee</topic><topic>Radar</topic><topic>sparse array</topic><topic>Toeplitz covariance matrix</topic><topic>unbiased estimation</topic><toplevel>online_resources</toplevel><creatorcontrib>Lu, Wenzhe</creatorcontrib><creatorcontrib>Qiao, Heng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lu, Wenzhe</au><au>Qiao, Heng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On Compressive Toeplitz Covariance Sketching</atitle><btitle>2021 CIE International Conference on Radar (Radar)</btitle><stitle>RADAR</stitle><date>2021-12-15</date><risdate>2021</risdate><spage>2361</spage><epage>2365</epage><pages>2361-2365</pages><eissn>2640-7736</eissn><eisbn>9781665498142</eisbn><eisbn>1665498145</eisbn><abstract>This paper studies the problem of estimating Toeplitz covariance matrices from compressive temporal sketches. In contrast to most existing works on Toeplitz covariance estimation, we simultaneously look at the spatial and temporal sample complexities. To fully exploit the Toeplitz structure, we rely on the sparse-array idea to design the spatial samplers. Then we compare the performances of common unbiased estimators, and derive the conditions in terms of the sampler design under which the estimators yield the same MSE. As for the temporal complexity, for the first time in literature, we provide the non-asymptotic guarantee on entry-wise convergence as a function of the MSE, which reveals the trade-off between spatial and temporal complexities. The theoretical claims are demonstrated by the numerical experiments.</abstract><pub>IEEE</pub><doi>10.1109/Radar53847.2021.10028591</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2640-7736
ispartof 2021 CIE International Conference on Radar (Radar), 2021, p.2361-2365
issn 2640-7736
language eng
recordid cdi_ieee_primary_10028591
source IEEE Xplore All Conference Series
subjects Complexity theory
compressive sketch
Convergence
Covariance matrices
Estimation error
non-asymptotic guarantee
Radar
sparse array
Toeplitz covariance matrix
unbiased estimation
title On Compressive Toeplitz Covariance Sketching
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T18%3A16%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20Compressive%20Toeplitz%20Covariance%20Sketching&rft.btitle=2021%20CIE%20International%20Conference%20on%20Radar%20(Radar)&rft.au=Lu,%20Wenzhe&rft.date=2021-12-15&rft.spage=2361&rft.epage=2365&rft.pages=2361-2365&rft.eissn=2640-7736&rft_id=info:doi/10.1109/Radar53847.2021.10028591&rft.eisbn=9781665498142&rft.eisbn_list=1665498145&rft_dat=%3Cieee_CHZPO%3E10028591%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-b2f01dc64091cda1feab5188ee5aabeabdddfc307b93cacb523639257e60467c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10028591&rfr_iscdi=true