Loading…

Comparison of temperature control time prediction models for wide and thick plates based on machine learning

Temperature control time is a key parameter in the hot rolling process of wide and thick plate. Accurate prediction of temperature control time can help to make efficient production scheduling. The features related to temperature control time are extracted from the historical rolling data, and the c...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhang, Zhuolun, Li, Tieke, Wang, Bailin, Yuan, Shuaipeng
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 32
container_issue
container_start_page 29
container_title
container_volume
creator Zhang, Zhuolun
Li, Tieke
Wang, Bailin
Yuan, Shuaipeng
description Temperature control time is a key parameter in the hot rolling process of wide and thick plate. Accurate prediction of temperature control time can help to make efficient production scheduling. The features related to temperature control time are extracted from the historical rolling data, and the classified features are converted into numerical values by using the target variable coding method. All the sample data are normalized, and the Pearson correlation coefficient between all the features is calculated to remove redundant features and features with low correlation with the target variable. Using mean absolute error, root mean square error and coefficient of determination as evaluation indicators, the accuracy and robustness of five machine learning models in predicting temperature control time are compared and analyzed. The experimental results show that the BP neural network has the best performance.
doi_str_mv 10.1109/ISCID56505.2022.00014
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10029642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10029642</ieee_id><sourcerecordid>10029642</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-f785eb5d7cc91a75aa8966cdce9d3beb81eae5042dcd162702dff27cb9797db53</originalsourceid><addsrcrecordid>eNotz81KxDAYheEoCA7j3IFCbqA1SZukWUr9mYEBF-p6-Jp8daJtU5KIePd20NW7eThwCLnhrOScmdvdS7u7l0oyWQomRMkY4_UZ2RjdcKVkLdWSc7ISta6KStb6kmxS-jgxJbhgzYoMbRhniD6FiYaeZhxnjJC_IlIbphzDQLMfkc4RnbfZL2wMDodE-xDpt3dIYXI0H739pPMAGRPtIKGjJwn26CekA0Kc_PR-RS56GBJu_rsmb48Pr-222D8_7dq7feE5N7nodSOxk05bazhoCdAYpayzaFzVYddwBJSsFs665YhmwvW90LYz2mjXyWpNrv92PSIe5uhHiD8HzpgwqhbVLxyJXQw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Comparison of temperature control time prediction models for wide and thick plates based on machine learning</title><source>IEEE Xplore All Conference Series</source><creator>Zhang, Zhuolun ; Li, Tieke ; Wang, Bailin ; Yuan, Shuaipeng</creator><creatorcontrib>Zhang, Zhuolun ; Li, Tieke ; Wang, Bailin ; Yuan, Shuaipeng</creatorcontrib><description>Temperature control time is a key parameter in the hot rolling process of wide and thick plate. Accurate prediction of temperature control time can help to make efficient production scheduling. The features related to temperature control time are extracted from the historical rolling data, and the classified features are converted into numerical values by using the target variable coding method. All the sample data are normalized, and the Pearson correlation coefficient between all the features is calculated to remove redundant features and features with low correlation with the target variable. Using mean absolute error, root mean square error and coefficient of determination as evaluation indicators, the accuracy and robustness of five machine learning models in predicting temperature control time are compared and analyzed. The experimental results show that the BP neural network has the best performance.</description><identifier>EISSN: 2473-3547</identifier><identifier>EISBN: 9781665456166</identifier><identifier>EISBN: 1665456167</identifier><identifier>DOI: 10.1109/ISCID56505.2022.00014</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Feature extraction ; feature selection ; machine learning ; Neural networks ; prediction models ; Predictive models ; Robustness ; Stability analysis ; Temperature control ; temperature control time</subject><ispartof>2022 15th International Symposium on Computational Intelligence and Design (ISCID), 2022, p.29-32</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10029642$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10029642$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Zhuolun</creatorcontrib><creatorcontrib>Li, Tieke</creatorcontrib><creatorcontrib>Wang, Bailin</creatorcontrib><creatorcontrib>Yuan, Shuaipeng</creatorcontrib><title>Comparison of temperature control time prediction models for wide and thick plates based on machine learning</title><title>2022 15th International Symposium on Computational Intelligence and Design (ISCID)</title><addtitle>ISCID</addtitle><description>Temperature control time is a key parameter in the hot rolling process of wide and thick plate. Accurate prediction of temperature control time can help to make efficient production scheduling. The features related to temperature control time are extracted from the historical rolling data, and the classified features are converted into numerical values by using the target variable coding method. All the sample data are normalized, and the Pearson correlation coefficient between all the features is calculated to remove redundant features and features with low correlation with the target variable. Using mean absolute error, root mean square error and coefficient of determination as evaluation indicators, the accuracy and robustness of five machine learning models in predicting temperature control time are compared and analyzed. The experimental results show that the BP neural network has the best performance.</description><subject>Computational modeling</subject><subject>Feature extraction</subject><subject>feature selection</subject><subject>machine learning</subject><subject>Neural networks</subject><subject>prediction models</subject><subject>Predictive models</subject><subject>Robustness</subject><subject>Stability analysis</subject><subject>Temperature control</subject><subject>temperature control time</subject><issn>2473-3547</issn><isbn>9781665456166</isbn><isbn>1665456167</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotz81KxDAYheEoCA7j3IFCbqA1SZukWUr9mYEBF-p6-Jp8daJtU5KIePd20NW7eThwCLnhrOScmdvdS7u7l0oyWQomRMkY4_UZ2RjdcKVkLdWSc7ISta6KStb6kmxS-jgxJbhgzYoMbRhniD6FiYaeZhxnjJC_IlIbphzDQLMfkc4RnbfZL2wMDodE-xDpt3dIYXI0H739pPMAGRPtIKGjJwn26CekA0Kc_PR-RS56GBJu_rsmb48Pr-222D8_7dq7feE5N7nodSOxk05bazhoCdAYpayzaFzVYddwBJSsFs665YhmwvW90LYz2mjXyWpNrv92PSIe5uhHiD8HzpgwqhbVLxyJXQw</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Zhang, Zhuolun</creator><creator>Li, Tieke</creator><creator>Wang, Bailin</creator><creator>Yuan, Shuaipeng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202212</creationdate><title>Comparison of temperature control time prediction models for wide and thick plates based on machine learning</title><author>Zhang, Zhuolun ; Li, Tieke ; Wang, Bailin ; Yuan, Shuaipeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-f785eb5d7cc91a75aa8966cdce9d3beb81eae5042dcd162702dff27cb9797db53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational modeling</topic><topic>Feature extraction</topic><topic>feature selection</topic><topic>machine learning</topic><topic>Neural networks</topic><topic>prediction models</topic><topic>Predictive models</topic><topic>Robustness</topic><topic>Stability analysis</topic><topic>Temperature control</topic><topic>temperature control time</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhuolun</creatorcontrib><creatorcontrib>Li, Tieke</creatorcontrib><creatorcontrib>Wang, Bailin</creatorcontrib><creatorcontrib>Yuan, Shuaipeng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Zhuolun</au><au>Li, Tieke</au><au>Wang, Bailin</au><au>Yuan, Shuaipeng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparison of temperature control time prediction models for wide and thick plates based on machine learning</atitle><btitle>2022 15th International Symposium on Computational Intelligence and Design (ISCID)</btitle><stitle>ISCID</stitle><date>2022-12</date><risdate>2022</risdate><spage>29</spage><epage>32</epage><pages>29-32</pages><eissn>2473-3547</eissn><eisbn>9781665456166</eisbn><eisbn>1665456167</eisbn><coden>IEEPAD</coden><abstract>Temperature control time is a key parameter in the hot rolling process of wide and thick plate. Accurate prediction of temperature control time can help to make efficient production scheduling. The features related to temperature control time are extracted from the historical rolling data, and the classified features are converted into numerical values by using the target variable coding method. All the sample data are normalized, and the Pearson correlation coefficient between all the features is calculated to remove redundant features and features with low correlation with the target variable. Using mean absolute error, root mean square error and coefficient of determination as evaluation indicators, the accuracy and robustness of five machine learning models in predicting temperature control time are compared and analyzed. The experimental results show that the BP neural network has the best performance.</abstract><pub>IEEE</pub><doi>10.1109/ISCID56505.2022.00014</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2473-3547
ispartof 2022 15th International Symposium on Computational Intelligence and Design (ISCID), 2022, p.29-32
issn 2473-3547
language eng
recordid cdi_ieee_primary_10029642
source IEEE Xplore All Conference Series
subjects Computational modeling
Feature extraction
feature selection
machine learning
Neural networks
prediction models
Predictive models
Robustness
Stability analysis
Temperature control
temperature control time
title Comparison of temperature control time prediction models for wide and thick plates based on machine learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparison%20of%20temperature%20control%20time%20prediction%20models%20for%20wide%20and%20thick%20plates%20based%20on%20machine%20learning&rft.btitle=2022%2015th%20International%20Symposium%20on%20Computational%20Intelligence%20and%20Design%20(ISCID)&rft.au=Zhang,%20Zhuolun&rft.date=2022-12&rft.spage=29&rft.epage=32&rft.pages=29-32&rft.eissn=2473-3547&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ISCID56505.2022.00014&rft.eisbn=9781665456166&rft.eisbn_list=1665456167&rft_dat=%3Cieee_CHZPO%3E10029642%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-f785eb5d7cc91a75aa8966cdce9d3beb81eae5042dcd162702dff27cb9797db53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10029642&rfr_iscdi=true