Loading…
Comparison of temperature control time prediction models for wide and thick plates based on machine learning
Temperature control time is a key parameter in the hot rolling process of wide and thick plate. Accurate prediction of temperature control time can help to make efficient production scheduling. The features related to temperature control time are extracted from the historical rolling data, and the c...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 32 |
container_issue | |
container_start_page | 29 |
container_title | |
container_volume | |
creator | Zhang, Zhuolun Li, Tieke Wang, Bailin Yuan, Shuaipeng |
description | Temperature control time is a key parameter in the hot rolling process of wide and thick plate. Accurate prediction of temperature control time can help to make efficient production scheduling. The features related to temperature control time are extracted from the historical rolling data, and the classified features are converted into numerical values by using the target variable coding method. All the sample data are normalized, and the Pearson correlation coefficient between all the features is calculated to remove redundant features and features with low correlation with the target variable. Using mean absolute error, root mean square error and coefficient of determination as evaluation indicators, the accuracy and robustness of five machine learning models in predicting temperature control time are compared and analyzed. The experimental results show that the BP neural network has the best performance. |
doi_str_mv | 10.1109/ISCID56505.2022.00014 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10029642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10029642</ieee_id><sourcerecordid>10029642</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-f785eb5d7cc91a75aa8966cdce9d3beb81eae5042dcd162702dff27cb9797db53</originalsourceid><addsrcrecordid>eNotz81KxDAYheEoCA7j3IFCbqA1SZukWUr9mYEBF-p6-Jp8daJtU5KIePd20NW7eThwCLnhrOScmdvdS7u7l0oyWQomRMkY4_UZ2RjdcKVkLdWSc7ISta6KStb6kmxS-jgxJbhgzYoMbRhniD6FiYaeZhxnjJC_IlIbphzDQLMfkc4RnbfZL2wMDodE-xDpt3dIYXI0H739pPMAGRPtIKGjJwn26CekA0Kc_PR-RS56GBJu_rsmb48Pr-222D8_7dq7feE5N7nodSOxk05bazhoCdAYpayzaFzVYddwBJSsFs665YhmwvW90LYz2mjXyWpNrv92PSIe5uhHiD8HzpgwqhbVLxyJXQw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Comparison of temperature control time prediction models for wide and thick plates based on machine learning</title><source>IEEE Xplore All Conference Series</source><creator>Zhang, Zhuolun ; Li, Tieke ; Wang, Bailin ; Yuan, Shuaipeng</creator><creatorcontrib>Zhang, Zhuolun ; Li, Tieke ; Wang, Bailin ; Yuan, Shuaipeng</creatorcontrib><description>Temperature control time is a key parameter in the hot rolling process of wide and thick plate. Accurate prediction of temperature control time can help to make efficient production scheduling. The features related to temperature control time are extracted from the historical rolling data, and the classified features are converted into numerical values by using the target variable coding method. All the sample data are normalized, and the Pearson correlation coefficient between all the features is calculated to remove redundant features and features with low correlation with the target variable. Using mean absolute error, root mean square error and coefficient of determination as evaluation indicators, the accuracy and robustness of five machine learning models in predicting temperature control time are compared and analyzed. The experimental results show that the BP neural network has the best performance.</description><identifier>EISSN: 2473-3547</identifier><identifier>EISBN: 9781665456166</identifier><identifier>EISBN: 1665456167</identifier><identifier>DOI: 10.1109/ISCID56505.2022.00014</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Feature extraction ; feature selection ; machine learning ; Neural networks ; prediction models ; Predictive models ; Robustness ; Stability analysis ; Temperature control ; temperature control time</subject><ispartof>2022 15th International Symposium on Computational Intelligence and Design (ISCID), 2022, p.29-32</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10029642$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10029642$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Zhuolun</creatorcontrib><creatorcontrib>Li, Tieke</creatorcontrib><creatorcontrib>Wang, Bailin</creatorcontrib><creatorcontrib>Yuan, Shuaipeng</creatorcontrib><title>Comparison of temperature control time prediction models for wide and thick plates based on machine learning</title><title>2022 15th International Symposium on Computational Intelligence and Design (ISCID)</title><addtitle>ISCID</addtitle><description>Temperature control time is a key parameter in the hot rolling process of wide and thick plate. Accurate prediction of temperature control time can help to make efficient production scheduling. The features related to temperature control time are extracted from the historical rolling data, and the classified features are converted into numerical values by using the target variable coding method. All the sample data are normalized, and the Pearson correlation coefficient between all the features is calculated to remove redundant features and features with low correlation with the target variable. Using mean absolute error, root mean square error and coefficient of determination as evaluation indicators, the accuracy and robustness of five machine learning models in predicting temperature control time are compared and analyzed. The experimental results show that the BP neural network has the best performance.</description><subject>Computational modeling</subject><subject>Feature extraction</subject><subject>feature selection</subject><subject>machine learning</subject><subject>Neural networks</subject><subject>prediction models</subject><subject>Predictive models</subject><subject>Robustness</subject><subject>Stability analysis</subject><subject>Temperature control</subject><subject>temperature control time</subject><issn>2473-3547</issn><isbn>9781665456166</isbn><isbn>1665456167</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotz81KxDAYheEoCA7j3IFCbqA1SZukWUr9mYEBF-p6-Jp8daJtU5KIePd20NW7eThwCLnhrOScmdvdS7u7l0oyWQomRMkY4_UZ2RjdcKVkLdWSc7ISta6KStb6kmxS-jgxJbhgzYoMbRhniD6FiYaeZhxnjJC_IlIbphzDQLMfkc4RnbfZL2wMDodE-xDpt3dIYXI0H739pPMAGRPtIKGjJwn26CekA0Kc_PR-RS56GBJu_rsmb48Pr-222D8_7dq7feE5N7nodSOxk05bazhoCdAYpayzaFzVYddwBJSsFs665YhmwvW90LYz2mjXyWpNrv92PSIe5uhHiD8HzpgwqhbVLxyJXQw</recordid><startdate>202212</startdate><enddate>202212</enddate><creator>Zhang, Zhuolun</creator><creator>Li, Tieke</creator><creator>Wang, Bailin</creator><creator>Yuan, Shuaipeng</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202212</creationdate><title>Comparison of temperature control time prediction models for wide and thick plates based on machine learning</title><author>Zhang, Zhuolun ; Li, Tieke ; Wang, Bailin ; Yuan, Shuaipeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-f785eb5d7cc91a75aa8966cdce9d3beb81eae5042dcd162702dff27cb9797db53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Computational modeling</topic><topic>Feature extraction</topic><topic>feature selection</topic><topic>machine learning</topic><topic>Neural networks</topic><topic>prediction models</topic><topic>Predictive models</topic><topic>Robustness</topic><topic>Stability analysis</topic><topic>Temperature control</topic><topic>temperature control time</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Zhuolun</creatorcontrib><creatorcontrib>Li, Tieke</creatorcontrib><creatorcontrib>Wang, Bailin</creatorcontrib><creatorcontrib>Yuan, Shuaipeng</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Zhuolun</au><au>Li, Tieke</au><au>Wang, Bailin</au><au>Yuan, Shuaipeng</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparison of temperature control time prediction models for wide and thick plates based on machine learning</atitle><btitle>2022 15th International Symposium on Computational Intelligence and Design (ISCID)</btitle><stitle>ISCID</stitle><date>2022-12</date><risdate>2022</risdate><spage>29</spage><epage>32</epage><pages>29-32</pages><eissn>2473-3547</eissn><eisbn>9781665456166</eisbn><eisbn>1665456167</eisbn><coden>IEEPAD</coden><abstract>Temperature control time is a key parameter in the hot rolling process of wide and thick plate. Accurate prediction of temperature control time can help to make efficient production scheduling. The features related to temperature control time are extracted from the historical rolling data, and the classified features are converted into numerical values by using the target variable coding method. All the sample data are normalized, and the Pearson correlation coefficient between all the features is calculated to remove redundant features and features with low correlation with the target variable. Using mean absolute error, root mean square error and coefficient of determination as evaluation indicators, the accuracy and robustness of five machine learning models in predicting temperature control time are compared and analyzed. The experimental results show that the BP neural network has the best performance.</abstract><pub>IEEE</pub><doi>10.1109/ISCID56505.2022.00014</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2473-3547 |
ispartof | 2022 15th International Symposium on Computational Intelligence and Design (ISCID), 2022, p.29-32 |
issn | 2473-3547 |
language | eng |
recordid | cdi_ieee_primary_10029642 |
source | IEEE Xplore All Conference Series |
subjects | Computational modeling Feature extraction feature selection machine learning Neural networks prediction models Predictive models Robustness Stability analysis Temperature control temperature control time |
title | Comparison of temperature control time prediction models for wide and thick plates based on machine learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A58%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparison%20of%20temperature%20control%20time%20prediction%20models%20for%20wide%20and%20thick%20plates%20based%20on%20machine%20learning&rft.btitle=2022%2015th%20International%20Symposium%20on%20Computational%20Intelligence%20and%20Design%20(ISCID)&rft.au=Zhang,%20Zhuolun&rft.date=2022-12&rft.spage=29&rft.epage=32&rft.pages=29-32&rft.eissn=2473-3547&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ISCID56505.2022.00014&rft.eisbn=9781665456166&rft.eisbn_list=1665456167&rft_dat=%3Cieee_CHZPO%3E10029642%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-f785eb5d7cc91a75aa8966cdce9d3beb81eae5042dcd162702dff27cb9797db53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10029642&rfr_iscdi=true |