Loading…

Deep Model-Based Super-Resolution with Non-uniform Blur

We propose a state-of-the-art method for super-resolution with non-uniform blur. Single-image super-resolution methods seek to restore a high-resolution image from blurred, subsampled, and noisy measurements. Despite their impressive performance, existing techniques usually assume a uniform blur ker...

Full description

Saved in:
Bibliographic Details
Main Authors: Laroche, Charles, Almansa, Andres, Tassano, Matias
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1808
container_issue
container_start_page 1797
container_title
container_volume
creator Laroche, Charles
Almansa, Andres
Tassano, Matias
description We propose a state-of-the-art method for super-resolution with non-uniform blur. Single-image super-resolution methods seek to restore a high-resolution image from blurred, subsampled, and noisy measurements. Despite their impressive performance, existing techniques usually assume a uniform blur kernel. Hence, these techniques do not generalize well to the more general case of non-uniform blur. Instead, in this paper, we address the more realistic and computationally challenging case of spatially-varying blur. To this end, we first propose a fast deep plug-and-play algorithm, based on linearized ADMM splitting techniques, which can solve the super-resolution problem with spatially-varying blur. Second, we unfold our iterative algorithm into a single network and train it end-to-end. In this way, we overcome the intricacy of manually tuning the parameters involved in the optimization scheme. Our algorithm presents remarkable performance and generalizes well after a single training to a large family of spatially-varying blur kernels, noise levels and scale factors.
doi_str_mv 10.1109/WACV56688.2023.00184
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10030233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10030233</ieee_id><sourcerecordid>10030233</sourcerecordid><originalsourceid>FETCH-LOGICAL-h238t-5922e1264b2b5022b70cb44591298059e6ed7bf35ee9507a219fad266b33bc443</originalsourceid><addsrcrecordid>eNotj8tOwzAQRQ0SEm3hD7rIDzh4ZmzHXrbhKbVF4rms4maiBqVJlIcQf08kWN3dOecKsQQVAyh_87lKP4y1zsWokGKlwOkzMQdrjfakLZyLGVqN0pODSzHv-y-lyIOnmUhumdto2-RcyXXWcx69ji138oX7phqHsqmj73I4RrumlmNdFk13itbV2F2JiyKrer7-34V4v797Sx_l5vnhKV1t5BHJDdJ4RIZJHjAYhRgSdQhaGw_onTKeLedJKMgwe6OSDMEXWY7WBqJw0JoWYvnHLZl533blKet-9jD1T1eJfgGQDUUA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Deep Model-Based Super-Resolution with Non-uniform Blur</title><source>IEEE Xplore All Conference Series</source><creator>Laroche, Charles ; Almansa, Andres ; Tassano, Matias</creator><creatorcontrib>Laroche, Charles ; Almansa, Andres ; Tassano, Matias</creatorcontrib><description>We propose a state-of-the-art method for super-resolution with non-uniform blur. Single-image super-resolution methods seek to restore a high-resolution image from blurred, subsampled, and noisy measurements. Despite their impressive performance, existing techniques usually assume a uniform blur kernel. Hence, these techniques do not generalize well to the more general case of non-uniform blur. Instead, in this paper, we address the more realistic and computationally challenging case of spatially-varying blur. To this end, we first propose a fast deep plug-and-play algorithm, based on linearized ADMM splitting techniques, which can solve the super-resolution problem with spatially-varying blur. Second, we unfold our iterative algorithm into a single network and train it end-to-end. In this way, we overcome the intricacy of manually tuning the parameters involved in the optimization scheme. Our algorithm presents remarkable performance and generalizes well after a single training to a large family of spatially-varying blur kernels, noise levels and scale factors.</description><identifier>EISSN: 2642-9381</identifier><identifier>EISBN: 1665493461</identifier><identifier>EISBN: 9781665493468</identifier><identifier>DOI: 10.1109/WACV56688.2023.00184</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithms: Computational photography ; Computer vision ; image and video synthesis ; Image restoration ; Iterative methods ; Kernel ; Noise measurement ; Superresolution ; Training</subject><ispartof>2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2023, p.1797-1808</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10030233$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10030233$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Laroche, Charles</creatorcontrib><creatorcontrib>Almansa, Andres</creatorcontrib><creatorcontrib>Tassano, Matias</creatorcontrib><title>Deep Model-Based Super-Resolution with Non-uniform Blur</title><title>2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)</title><addtitle>WACV</addtitle><description>We propose a state-of-the-art method for super-resolution with non-uniform blur. Single-image super-resolution methods seek to restore a high-resolution image from blurred, subsampled, and noisy measurements. Despite their impressive performance, existing techniques usually assume a uniform blur kernel. Hence, these techniques do not generalize well to the more general case of non-uniform blur. Instead, in this paper, we address the more realistic and computationally challenging case of spatially-varying blur. To this end, we first propose a fast deep plug-and-play algorithm, based on linearized ADMM splitting techniques, which can solve the super-resolution problem with spatially-varying blur. Second, we unfold our iterative algorithm into a single network and train it end-to-end. In this way, we overcome the intricacy of manually tuning the parameters involved in the optimization scheme. Our algorithm presents remarkable performance and generalizes well after a single training to a large family of spatially-varying blur kernels, noise levels and scale factors.</description><subject>Algorithms: Computational photography</subject><subject>Computer vision</subject><subject>image and video synthesis</subject><subject>Image restoration</subject><subject>Iterative methods</subject><subject>Kernel</subject><subject>Noise measurement</subject><subject>Superresolution</subject><subject>Training</subject><issn>2642-9381</issn><isbn>1665493461</isbn><isbn>9781665493468</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tOwzAQRQ0SEm3hD7rIDzh4ZmzHXrbhKbVF4rms4maiBqVJlIcQf08kWN3dOecKsQQVAyh_87lKP4y1zsWokGKlwOkzMQdrjfakLZyLGVqN0pODSzHv-y-lyIOnmUhumdto2-RcyXXWcx69ji138oX7phqHsqmj73I4RrumlmNdFk13itbV2F2JiyKrer7-34V4v797Sx_l5vnhKV1t5BHJDdJ4RIZJHjAYhRgSdQhaGw_onTKeLedJKMgwe6OSDMEXWY7WBqJw0JoWYvnHLZl533blKet-9jD1T1eJfgGQDUUA</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Laroche, Charles</creator><creator>Almansa, Andres</creator><creator>Tassano, Matias</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202301</creationdate><title>Deep Model-Based Super-Resolution with Non-uniform Blur</title><author>Laroche, Charles ; Almansa, Andres ; Tassano, Matias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h238t-5922e1264b2b5022b70cb44591298059e6ed7bf35ee9507a219fad266b33bc443</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms: Computational photography</topic><topic>Computer vision</topic><topic>image and video synthesis</topic><topic>Image restoration</topic><topic>Iterative methods</topic><topic>Kernel</topic><topic>Noise measurement</topic><topic>Superresolution</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Laroche, Charles</creatorcontrib><creatorcontrib>Almansa, Andres</creatorcontrib><creatorcontrib>Tassano, Matias</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (IEEE/IET Electronic Library - IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Laroche, Charles</au><au>Almansa, Andres</au><au>Tassano, Matias</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deep Model-Based Super-Resolution with Non-uniform Blur</atitle><btitle>2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV)</btitle><stitle>WACV</stitle><date>2023-01</date><risdate>2023</risdate><spage>1797</spage><epage>1808</epage><pages>1797-1808</pages><eissn>2642-9381</eissn><eisbn>1665493461</eisbn><eisbn>9781665493468</eisbn><coden>IEEPAD</coden><abstract>We propose a state-of-the-art method for super-resolution with non-uniform blur. Single-image super-resolution methods seek to restore a high-resolution image from blurred, subsampled, and noisy measurements. Despite their impressive performance, existing techniques usually assume a uniform blur kernel. Hence, these techniques do not generalize well to the more general case of non-uniform blur. Instead, in this paper, we address the more realistic and computationally challenging case of spatially-varying blur. To this end, we first propose a fast deep plug-and-play algorithm, based on linearized ADMM splitting techniques, which can solve the super-resolution problem with spatially-varying blur. Second, we unfold our iterative algorithm into a single network and train it end-to-end. In this way, we overcome the intricacy of manually tuning the parameters involved in the optimization scheme. Our algorithm presents remarkable performance and generalizes well after a single training to a large family of spatially-varying blur kernels, noise levels and scale factors.</abstract><pub>IEEE</pub><doi>10.1109/WACV56688.2023.00184</doi><tpages>12</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2642-9381
ispartof 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2023, p.1797-1808
issn 2642-9381
language eng
recordid cdi_ieee_primary_10030233
source IEEE Xplore All Conference Series
subjects Algorithms: Computational photography
Computer vision
image and video synthesis
Image restoration
Iterative methods
Kernel
Noise measurement
Superresolution
Training
title Deep Model-Based Super-Resolution with Non-uniform Blur
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A36%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deep%20Model-Based%20Super-Resolution%20with%20Non-uniform%20Blur&rft.btitle=2023%20IEEE/CVF%20Winter%20Conference%20on%20Applications%20of%20Computer%20Vision%20(WACV)&rft.au=Laroche,%20Charles&rft.date=2023-01&rft.spage=1797&rft.epage=1808&rft.pages=1797-1808&rft.eissn=2642-9381&rft.coden=IEEPAD&rft_id=info:doi/10.1109/WACV56688.2023.00184&rft.eisbn=1665493461&rft.eisbn_list=9781665493468&rft_dat=%3Cieee_CHZPO%3E10030233%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-h238t-5922e1264b2b5022b70cb44591298059e6ed7bf35ee9507a219fad266b33bc443%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10030233&rfr_iscdi=true