Loading…
Identification of Cellular Signal Measurements Using Machine Learning
Spectrum awareness has a plethora of civilian and defense applications, such as spectrum resource management, adaptive transmissions, interference detection, and identification of threat signals. This article proposes an identification neural network (INN)-based model that identifies cellular signal...
Saved in:
Published in: | IEEE transactions on instrumentation and measurement 2023, Vol.72, p.1-4 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Spectrum awareness has a plethora of civilian and defense applications, such as spectrum resource management, adaptive transmissions, interference detection, and identification of threat signals. This article proposes an identification neural network (INN)-based model that identifies cellular signals from three different radio access technologies, namely global system for mobile (GSM) communications, universal mobile telecommunications service, and long-term evolution. The proposed INN identifies whether or not the measured power spectral density belongs to a certain cellular signal type. Two data collection approaches (DCAs) are considered: in-band and multiple-band. The over-the-air measurements for the two DCAs show that with low computational complexity, the proposed INN model provides an identification accuracy between 93% and 100%, with a false alarm (FA) rate between 0% and 10%. |
---|---|
ISSN: | 0018-9456 1557-9662 |
DOI: | 10.1109/TIM.2023.3238695 |