Loading…

MacroRank: Ranking Macro Placement Solutions Leveraging Translation Equivariancy

Modern large-scale designs make extensive use of heterogeneous macros, which can significantly affect routability. Predicting the final routing quality in the early macro placement stage can filter out poor solutions and speed up design closure. By observing that routing is correlated with the relat...

Full description

Saved in:
Bibliographic Details
Main Authors: Chen, Yifan, Mai, Jing, Gao, Xiaohan, Zhang, Muhan, Lin, Yibo
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 263
container_issue
container_start_page 258
container_title
container_volume
creator Chen, Yifan
Mai, Jing
Gao, Xiaohan
Zhang, Muhan
Lin, Yibo
description Modern large-scale designs make extensive use of heterogeneous macros, which can significantly affect routability. Predicting the final routing quality in the early macro placement stage can filter out poor solutions and speed up design closure. By observing that routing is correlated with the relative positions between instances, we propose MacroRank, a macro placement ranking framework leveraging translation equivariance and a Learning to Rank technique. The framework is able to learn the relative order of macro placement solutions and rank them based on routing quality metrics like wirelength, number of vias, and number of shorts. The experimental results show that compared with the most recent baseline, our framework can improve the Kendall rank correlation coefficient by 49.5% and the average performance of top-30 prediction by 8.1%, 2.3%, and 10.6% on wirelength, vias, and shorts, respectively.
doi_str_mv 10.1145/3566097.3567899
format conference_proceeding
fullrecord <record><control><sourceid>acm_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10044786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10044786</ieee_id><sourcerecordid>acm_books_10_1145_3566097_3567899</sourcerecordid><originalsourceid>FETCH-LOGICAL-a248t-33ad48272a9967c0aeb9fd6bb99c0292efc59f1b6574197cc7dd58b328e768ec3</originalsourceid><addsrcrecordid>eNqNj81KxDAURqMiWMau3fgAblpvcpPc3KUM_sGIIAruQpKmUMex0rrx7Y1MV65cncXh--AIcSahlVKbSzTWAlNbSI75QNRMrgjAQtSHolLSYGOZXo_-uBNRz_MbAChHABIrUT2ENI1P4WN7Ko778D7neuFKvNxcP6_vms3j7f36atMEpd1Xgxg67RSpwGwpQciR-87GyJxAscp9MtzLaA1pyZQSdZ1xEZXLZF1OuBLn-98h5-w_p2EXpm8vAbQmZ4tu9zqknY_juJ2L87_hfgn3S7iP05D7Mrj45wB_AMrKURs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>MacroRank: Ranking Macro Placement Solutions Leveraging Translation Equivariancy</title><source>IEEE Xplore All Conference Series</source><creator>Chen, Yifan ; Mai, Jing ; Gao, Xiaohan ; Zhang, Muhan ; Lin, Yibo</creator><creatorcontrib>Chen, Yifan ; Mai, Jing ; Gao, Xiaohan ; Zhang, Muhan ; Lin, Yibo</creatorcontrib><description>Modern large-scale designs make extensive use of heterogeneous macros, which can significantly affect routability. Predicting the final routing quality in the early macro placement stage can filter out poor solutions and speed up design closure. By observing that routing is correlated with the relative positions between instances, we propose MacroRank, a macro placement ranking framework leveraging translation equivariance and a Learning to Rank technique. The framework is able to learn the relative order of macro placement solutions and rank them based on routing quality metrics like wirelength, number of vias, and number of shorts. The experimental results show that compared with the most recent baseline, our framework can improve the Kendall rank correlation coefficient by 49.5% and the average performance of top-30 prediction by 8.1%, 2.3%, and 10.6% on wirelength, vias, and shorts, respectively.</description><identifier>ISBN: 9781450397834</identifier><identifier>ISBN: 1450397832</identifier><identifier>EISSN: 2153-697X</identifier><identifier>EISBN: 9781450397834</identifier><identifier>EISBN: 1450397832</identifier><identifier>DOI: 10.1145/3566097.3567899</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Applied computing ; Applied computing -- Arts and humanities ; Applied computing -- Arts and humanities -- Architecture (buildings) ; Applied computing -- Arts and humanities -- Architecture (buildings) -- Computer-aided design ; Applied computing -- Physical sciences and engineering ; Asia ; Benchmark testing ; Correlation coefficient ; Design automation ; Hardware ; Hardware -- Electronic design automation ; Hardware -- Electronic design automation -- Physical design (EDA) ; Hardware -- Electronic design automation -- Physical design (EDA) -- Placement ; Hardware -- Electronic design automation -- Physical design (EDA) -- Wire routing ; Hardware -- Hardware validation ; Measurement ; Predictive models ; Routing</subject><ispartof>2023 28th Asia and South Pacific Design Automation Conference (ASP-DAC), 2023, p.258-263</ispartof><rights>2023 ACM</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10044786$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10044786$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yifan</creatorcontrib><creatorcontrib>Mai, Jing</creatorcontrib><creatorcontrib>Gao, Xiaohan</creatorcontrib><creatorcontrib>Zhang, Muhan</creatorcontrib><creatorcontrib>Lin, Yibo</creatorcontrib><title>MacroRank: Ranking Macro Placement Solutions Leveraging Translation Equivariancy</title><title>2023 28th Asia and South Pacific Design Automation Conference (ASP-DAC)</title><addtitle>ASP-DAC</addtitle><description>Modern large-scale designs make extensive use of heterogeneous macros, which can significantly affect routability. Predicting the final routing quality in the early macro placement stage can filter out poor solutions and speed up design closure. By observing that routing is correlated with the relative positions between instances, we propose MacroRank, a macro placement ranking framework leveraging translation equivariance and a Learning to Rank technique. The framework is able to learn the relative order of macro placement solutions and rank them based on routing quality metrics like wirelength, number of vias, and number of shorts. The experimental results show that compared with the most recent baseline, our framework can improve the Kendall rank correlation coefficient by 49.5% and the average performance of top-30 prediction by 8.1%, 2.3%, and 10.6% on wirelength, vias, and shorts, respectively.</description><subject>Applied computing</subject><subject>Applied computing -- Arts and humanities</subject><subject>Applied computing -- Arts and humanities -- Architecture (buildings)</subject><subject>Applied computing -- Arts and humanities -- Architecture (buildings) -- Computer-aided design</subject><subject>Applied computing -- Physical sciences and engineering</subject><subject>Asia</subject><subject>Benchmark testing</subject><subject>Correlation coefficient</subject><subject>Design automation</subject><subject>Hardware</subject><subject>Hardware -- Electronic design automation</subject><subject>Hardware -- Electronic design automation -- Physical design (EDA)</subject><subject>Hardware -- Electronic design automation -- Physical design (EDA) -- Placement</subject><subject>Hardware -- Electronic design automation -- Physical design (EDA) -- Wire routing</subject><subject>Hardware -- Hardware validation</subject><subject>Measurement</subject><subject>Predictive models</subject><subject>Routing</subject><issn>2153-697X</issn><isbn>9781450397834</isbn><isbn>1450397832</isbn><isbn>9781450397834</isbn><isbn>1450397832</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqNj81KxDAURqMiWMau3fgAblpvcpPc3KUM_sGIIAruQpKmUMex0rrx7Y1MV65cncXh--AIcSahlVKbSzTWAlNbSI75QNRMrgjAQtSHolLSYGOZXo_-uBNRz_MbAChHABIrUT2ENI1P4WN7Ko778D7neuFKvNxcP6_vms3j7f36atMEpd1Xgxg67RSpwGwpQciR-87GyJxAscp9MtzLaA1pyZQSdZ1xEZXLZF1OuBLn-98h5-w_p2EXpm8vAbQmZ4tu9zqknY_juJ2L87_hfgn3S7iP05D7Mrj45wB_AMrKURs</recordid><startdate>20230116</startdate><enddate>20230116</enddate><creator>Chen, Yifan</creator><creator>Mai, Jing</creator><creator>Gao, Xiaohan</creator><creator>Zhang, Muhan</creator><creator>Lin, Yibo</creator><general>ACM</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230116</creationdate><title>MacroRank</title><author>Chen, Yifan ; Mai, Jing ; Gao, Xiaohan ; Zhang, Muhan ; Lin, Yibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a248t-33ad48272a9967c0aeb9fd6bb99c0292efc59f1b6574197cc7dd58b328e768ec3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied computing</topic><topic>Applied computing -- Arts and humanities</topic><topic>Applied computing -- Arts and humanities -- Architecture (buildings)</topic><topic>Applied computing -- Arts and humanities -- Architecture (buildings) -- Computer-aided design</topic><topic>Applied computing -- Physical sciences and engineering</topic><topic>Asia</topic><topic>Benchmark testing</topic><topic>Correlation coefficient</topic><topic>Design automation</topic><topic>Hardware</topic><topic>Hardware -- Electronic design automation</topic><topic>Hardware -- Electronic design automation -- Physical design (EDA)</topic><topic>Hardware -- Electronic design automation -- Physical design (EDA) -- Placement</topic><topic>Hardware -- Electronic design automation -- Physical design (EDA) -- Wire routing</topic><topic>Hardware -- Hardware validation</topic><topic>Measurement</topic><topic>Predictive models</topic><topic>Routing</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yifan</creatorcontrib><creatorcontrib>Mai, Jing</creatorcontrib><creatorcontrib>Gao, Xiaohan</creatorcontrib><creatorcontrib>Zhang, Muhan</creatorcontrib><creatorcontrib>Lin, Yibo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yifan</au><au>Mai, Jing</au><au>Gao, Xiaohan</au><au>Zhang, Muhan</au><au>Lin, Yibo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>MacroRank: Ranking Macro Placement Solutions Leveraging Translation Equivariancy</atitle><btitle>2023 28th Asia and South Pacific Design Automation Conference (ASP-DAC)</btitle><stitle>ASP-DAC</stitle><date>2023-01-16</date><risdate>2023</risdate><spage>258</spage><epage>263</epage><pages>258-263</pages><eissn>2153-697X</eissn><isbn>9781450397834</isbn><isbn>1450397832</isbn><eisbn>9781450397834</eisbn><eisbn>1450397832</eisbn><abstract>Modern large-scale designs make extensive use of heterogeneous macros, which can significantly affect routability. Predicting the final routing quality in the early macro placement stage can filter out poor solutions and speed up design closure. By observing that routing is correlated with the relative positions between instances, we propose MacroRank, a macro placement ranking framework leveraging translation equivariance and a Learning to Rank technique. The framework is able to learn the relative order of macro placement solutions and rank them based on routing quality metrics like wirelength, number of vias, and number of shorts. The experimental results show that compared with the most recent baseline, our framework can improve the Kendall rank correlation coefficient by 49.5% and the average performance of top-30 prediction by 8.1%, 2.3%, and 10.6% on wirelength, vias, and shorts, respectively.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3566097.3567899</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781450397834
ispartof 2023 28th Asia and South Pacific Design Automation Conference (ASP-DAC), 2023, p.258-263
issn 2153-697X
language eng
recordid cdi_ieee_primary_10044786
source IEEE Xplore All Conference Series
subjects Applied computing
Applied computing -- Arts and humanities
Applied computing -- Arts and humanities -- Architecture (buildings)
Applied computing -- Arts and humanities -- Architecture (buildings) -- Computer-aided design
Applied computing -- Physical sciences and engineering
Asia
Benchmark testing
Correlation coefficient
Design automation
Hardware
Hardware -- Electronic design automation
Hardware -- Electronic design automation -- Physical design (EDA)
Hardware -- Electronic design automation -- Physical design (EDA) -- Placement
Hardware -- Electronic design automation -- Physical design (EDA) -- Wire routing
Hardware -- Hardware validation
Measurement
Predictive models
Routing
title MacroRank: Ranking Macro Placement Solutions Leveraging Translation Equivariancy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=MacroRank:%20Ranking%20Macro%20Placement%20Solutions%20Leveraging%20Translation%20Equivariancy&rft.btitle=2023%2028th%20Asia%20and%20South%20Pacific%20Design%20Automation%20Conference%20(ASP-DAC)&rft.au=Chen,%20Yifan&rft.date=2023-01-16&rft.spage=258&rft.epage=263&rft.pages=258-263&rft.eissn=2153-697X&rft.isbn=9781450397834&rft.isbn_list=1450397832&rft_id=info:doi/10.1145/3566097.3567899&rft.eisbn=9781450397834&rft.eisbn_list=1450397832&rft_dat=%3Cacm_CHZPO%3Eacm_books_10_1145_3566097_3567899%3C/acm_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a248t-33ad48272a9967c0aeb9fd6bb99c0292efc59f1b6574197cc7dd58b328e768ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10044786&rfr_iscdi=true