Loading…
MacroRank: Ranking Macro Placement Solutions Leveraging Translation Equivariancy
Modern large-scale designs make extensive use of heterogeneous macros, which can significantly affect routability. Predicting the final routing quality in the early macro placement stage can filter out poor solutions and speed up design closure. By observing that routing is correlated with the relat...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 263 |
container_issue | |
container_start_page | 258 |
container_title | |
container_volume | |
creator | Chen, Yifan Mai, Jing Gao, Xiaohan Zhang, Muhan Lin, Yibo |
description | Modern large-scale designs make extensive use of heterogeneous macros, which can significantly affect routability. Predicting the final routing quality in the early macro placement stage can filter out poor solutions and speed up design closure. By observing that routing is correlated with the relative positions between instances, we propose MacroRank, a macro placement ranking framework leveraging translation equivariance and a Learning to Rank technique. The framework is able to learn the relative order of macro placement solutions and rank them based on routing quality metrics like wirelength, number of vias, and number of shorts. The experimental results show that compared with the most recent baseline, our framework can improve the Kendall rank correlation coefficient by 49.5% and the average performance of top-30 prediction by 8.1%, 2.3%, and 10.6% on wirelength, vias, and shorts, respectively. |
doi_str_mv | 10.1145/3566097.3567899 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>acm_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10044786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10044786</ieee_id><sourcerecordid>acm_books_10_1145_3566097_3567899</sourcerecordid><originalsourceid>FETCH-LOGICAL-a248t-33ad48272a9967c0aeb9fd6bb99c0292efc59f1b6574197cc7dd58b328e768ec3</originalsourceid><addsrcrecordid>eNqNj81KxDAURqMiWMau3fgAblpvcpPc3KUM_sGIIAruQpKmUMex0rrx7Y1MV65cncXh--AIcSahlVKbSzTWAlNbSI75QNRMrgjAQtSHolLSYGOZXo_-uBNRz_MbAChHABIrUT2ENI1P4WN7Ko778D7neuFKvNxcP6_vms3j7f36atMEpd1Xgxg67RSpwGwpQciR-87GyJxAscp9MtzLaA1pyZQSdZ1xEZXLZF1OuBLn-98h5-w_p2EXpm8vAbQmZ4tu9zqknY_juJ2L87_hfgn3S7iP05D7Mrj45wB_AMrKURs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>MacroRank: Ranking Macro Placement Solutions Leveraging Translation Equivariancy</title><source>IEEE Xplore All Conference Series</source><creator>Chen, Yifan ; Mai, Jing ; Gao, Xiaohan ; Zhang, Muhan ; Lin, Yibo</creator><creatorcontrib>Chen, Yifan ; Mai, Jing ; Gao, Xiaohan ; Zhang, Muhan ; Lin, Yibo</creatorcontrib><description>Modern large-scale designs make extensive use of heterogeneous macros, which can significantly affect routability. Predicting the final routing quality in the early macro placement stage can filter out poor solutions and speed up design closure. By observing that routing is correlated with the relative positions between instances, we propose MacroRank, a macro placement ranking framework leveraging translation equivariance and a Learning to Rank technique. The framework is able to learn the relative order of macro placement solutions and rank them based on routing quality metrics like wirelength, number of vias, and number of shorts. The experimental results show that compared with the most recent baseline, our framework can improve the Kendall rank correlation coefficient by 49.5% and the average performance of top-30 prediction by 8.1%, 2.3%, and 10.6% on wirelength, vias, and shorts, respectively.</description><identifier>ISBN: 9781450397834</identifier><identifier>ISBN: 1450397832</identifier><identifier>EISSN: 2153-697X</identifier><identifier>EISBN: 9781450397834</identifier><identifier>EISBN: 1450397832</identifier><identifier>DOI: 10.1145/3566097.3567899</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Applied computing ; Applied computing -- Arts and humanities ; Applied computing -- Arts and humanities -- Architecture (buildings) ; Applied computing -- Arts and humanities -- Architecture (buildings) -- Computer-aided design ; Applied computing -- Physical sciences and engineering ; Asia ; Benchmark testing ; Correlation coefficient ; Design automation ; Hardware ; Hardware -- Electronic design automation ; Hardware -- Electronic design automation -- Physical design (EDA) ; Hardware -- Electronic design automation -- Physical design (EDA) -- Placement ; Hardware -- Electronic design automation -- Physical design (EDA) -- Wire routing ; Hardware -- Hardware validation ; Measurement ; Predictive models ; Routing</subject><ispartof>2023 28th Asia and South Pacific Design Automation Conference (ASP-DAC), 2023, p.258-263</ispartof><rights>2023 ACM</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10044786$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10044786$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chen, Yifan</creatorcontrib><creatorcontrib>Mai, Jing</creatorcontrib><creatorcontrib>Gao, Xiaohan</creatorcontrib><creatorcontrib>Zhang, Muhan</creatorcontrib><creatorcontrib>Lin, Yibo</creatorcontrib><title>MacroRank: Ranking Macro Placement Solutions Leveraging Translation Equivariancy</title><title>2023 28th Asia and South Pacific Design Automation Conference (ASP-DAC)</title><addtitle>ASP-DAC</addtitle><description>Modern large-scale designs make extensive use of heterogeneous macros, which can significantly affect routability. Predicting the final routing quality in the early macro placement stage can filter out poor solutions and speed up design closure. By observing that routing is correlated with the relative positions between instances, we propose MacroRank, a macro placement ranking framework leveraging translation equivariance and a Learning to Rank technique. The framework is able to learn the relative order of macro placement solutions and rank them based on routing quality metrics like wirelength, number of vias, and number of shorts. The experimental results show that compared with the most recent baseline, our framework can improve the Kendall rank correlation coefficient by 49.5% and the average performance of top-30 prediction by 8.1%, 2.3%, and 10.6% on wirelength, vias, and shorts, respectively.</description><subject>Applied computing</subject><subject>Applied computing -- Arts and humanities</subject><subject>Applied computing -- Arts and humanities -- Architecture (buildings)</subject><subject>Applied computing -- Arts and humanities -- Architecture (buildings) -- Computer-aided design</subject><subject>Applied computing -- Physical sciences and engineering</subject><subject>Asia</subject><subject>Benchmark testing</subject><subject>Correlation coefficient</subject><subject>Design automation</subject><subject>Hardware</subject><subject>Hardware -- Electronic design automation</subject><subject>Hardware -- Electronic design automation -- Physical design (EDA)</subject><subject>Hardware -- Electronic design automation -- Physical design (EDA) -- Placement</subject><subject>Hardware -- Electronic design automation -- Physical design (EDA) -- Wire routing</subject><subject>Hardware -- Hardware validation</subject><subject>Measurement</subject><subject>Predictive models</subject><subject>Routing</subject><issn>2153-697X</issn><isbn>9781450397834</isbn><isbn>1450397832</isbn><isbn>9781450397834</isbn><isbn>1450397832</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNqNj81KxDAURqMiWMau3fgAblpvcpPc3KUM_sGIIAruQpKmUMex0rrx7Y1MV65cncXh--AIcSahlVKbSzTWAlNbSI75QNRMrgjAQtSHolLSYGOZXo_-uBNRz_MbAChHABIrUT2ENI1P4WN7Ko778D7neuFKvNxcP6_vms3j7f36atMEpd1Xgxg67RSpwGwpQciR-87GyJxAscp9MtzLaA1pyZQSdZ1xEZXLZF1OuBLn-98h5-w_p2EXpm8vAbQmZ4tu9zqknY_juJ2L87_hfgn3S7iP05D7Mrj45wB_AMrKURs</recordid><startdate>20230116</startdate><enddate>20230116</enddate><creator>Chen, Yifan</creator><creator>Mai, Jing</creator><creator>Gao, Xiaohan</creator><creator>Zhang, Muhan</creator><creator>Lin, Yibo</creator><general>ACM</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230116</creationdate><title>MacroRank</title><author>Chen, Yifan ; Mai, Jing ; Gao, Xiaohan ; Zhang, Muhan ; Lin, Yibo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a248t-33ad48272a9967c0aeb9fd6bb99c0292efc59f1b6574197cc7dd58b328e768ec3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied computing</topic><topic>Applied computing -- Arts and humanities</topic><topic>Applied computing -- Arts and humanities -- Architecture (buildings)</topic><topic>Applied computing -- Arts and humanities -- Architecture (buildings) -- Computer-aided design</topic><topic>Applied computing -- Physical sciences and engineering</topic><topic>Asia</topic><topic>Benchmark testing</topic><topic>Correlation coefficient</topic><topic>Design automation</topic><topic>Hardware</topic><topic>Hardware -- Electronic design automation</topic><topic>Hardware -- Electronic design automation -- Physical design (EDA)</topic><topic>Hardware -- Electronic design automation -- Physical design (EDA) -- Placement</topic><topic>Hardware -- Electronic design automation -- Physical design (EDA) -- Wire routing</topic><topic>Hardware -- Hardware validation</topic><topic>Measurement</topic><topic>Predictive models</topic><topic>Routing</topic><toplevel>online_resources</toplevel><creatorcontrib>Chen, Yifan</creatorcontrib><creatorcontrib>Mai, Jing</creatorcontrib><creatorcontrib>Gao, Xiaohan</creatorcontrib><creatorcontrib>Zhang, Muhan</creatorcontrib><creatorcontrib>Lin, Yibo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Yifan</au><au>Mai, Jing</au><au>Gao, Xiaohan</au><au>Zhang, Muhan</au><au>Lin, Yibo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>MacroRank: Ranking Macro Placement Solutions Leveraging Translation Equivariancy</atitle><btitle>2023 28th Asia and South Pacific Design Automation Conference (ASP-DAC)</btitle><stitle>ASP-DAC</stitle><date>2023-01-16</date><risdate>2023</risdate><spage>258</spage><epage>263</epage><pages>258-263</pages><eissn>2153-697X</eissn><isbn>9781450397834</isbn><isbn>1450397832</isbn><eisbn>9781450397834</eisbn><eisbn>1450397832</eisbn><abstract>Modern large-scale designs make extensive use of heterogeneous macros, which can significantly affect routability. Predicting the final routing quality in the early macro placement stage can filter out poor solutions and speed up design closure. By observing that routing is correlated with the relative positions between instances, we propose MacroRank, a macro placement ranking framework leveraging translation equivariance and a Learning to Rank technique. The framework is able to learn the relative order of macro placement solutions and rank them based on routing quality metrics like wirelength, number of vias, and number of shorts. The experimental results show that compared with the most recent baseline, our framework can improve the Kendall rank correlation coefficient by 49.5% and the average performance of top-30 prediction by 8.1%, 2.3%, and 10.6% on wirelength, vias, and shorts, respectively.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/3566097.3567899</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781450397834 |
ispartof | 2023 28th Asia and South Pacific Design Automation Conference (ASP-DAC), 2023, p.258-263 |
issn | 2153-697X |
language | eng |
recordid | cdi_ieee_primary_10044786 |
source | IEEE Xplore All Conference Series |
subjects | Applied computing Applied computing -- Arts and humanities Applied computing -- Arts and humanities -- Architecture (buildings) Applied computing -- Arts and humanities -- Architecture (buildings) -- Computer-aided design Applied computing -- Physical sciences and engineering Asia Benchmark testing Correlation coefficient Design automation Hardware Hardware -- Electronic design automation Hardware -- Electronic design automation -- Physical design (EDA) Hardware -- Electronic design automation -- Physical design (EDA) -- Placement Hardware -- Electronic design automation -- Physical design (EDA) -- Wire routing Hardware -- Hardware validation Measurement Predictive models Routing |
title | MacroRank: Ranking Macro Placement Solutions Leveraging Translation Equivariancy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T12%3A58%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=MacroRank:%20Ranking%20Macro%20Placement%20Solutions%20Leveraging%20Translation%20Equivariancy&rft.btitle=2023%2028th%20Asia%20and%20South%20Pacific%20Design%20Automation%20Conference%20(ASP-DAC)&rft.au=Chen,%20Yifan&rft.date=2023-01-16&rft.spage=258&rft.epage=263&rft.pages=258-263&rft.eissn=2153-697X&rft.isbn=9781450397834&rft.isbn_list=1450397832&rft_id=info:doi/10.1145/3566097.3567899&rft.eisbn=9781450397834&rft.eisbn_list=1450397832&rft_dat=%3Cacm_CHZPO%3Eacm_books_10_1145_3566097_3567899%3C/acm_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a248t-33ad48272a9967c0aeb9fd6bb99c0292efc59f1b6574197cc7dd58b328e768ec3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10044786&rfr_iscdi=true |