Loading…

Joint Signal Estimation and Nonlinear Topology Identification from Noisy Data with Missing Entries

Topology identification from multiple time series has been proved to be useful for system identification, anomaly detection, denoising, and data completion. Vector autoregressive (VAR) methods have proved well in identifying directed topology from complex networks. The task of inferring topology in...

Full description

Saved in:
Bibliographic Details
Main Authors: Roy, Kevin, Lopez-Ramos, Luis Miguel, Beferull-Lozano, Baltasar
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 440
container_issue
container_start_page 436
container_title
container_volume
creator Roy, Kevin
Lopez-Ramos, Luis Miguel
Beferull-Lozano, Baltasar
description Topology identification from multiple time series has been proved to be useful for system identification, anomaly detection, denoising, and data completion. Vector autoregressive (VAR) methods have proved well in identifying directed topology from complex networks. The task of inferring topology in the presence of noise and missing observations has been studied for linear models. As a first approach to joint signal estimation and topology identification with a nonlinear model, this paper proposes a method to do so under the modelling assumption that signals are generated by a sparse VAR model in a latent space and then transformed by a set of invertible, component-wise nonlinearities. A non convex optimization problem is formed with lasso regularisation and solved via block coordinate descent (BCD). Initial experiments conducted on synthetic data sets show the identifying capability of the proposed method.
doi_str_mv 10.1109/IEEECONF56349.2022.10051968
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10051968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10051968</ieee_id><sourcerecordid>10051968</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-db68c3fe33e46ca27543a7bc97de402621e8c7d4cca783b76d96cbd554a1cf2a3</originalsourceid><addsrcrecordid>eNo10E1PAjEYBOBqYiKg_8BDE8-L_e72aHBBDMJBPJNu28XXLC3ZNjH8e0nQ01yeTDKD0CMlU0qJeVo2TTPbrOdScWGmjDA2pYRIalR9hcZUKSmkIcpcoxGTWlWME36Lxjl_E3LWNRuh9i1BLPgD9tH2uMkFDrZAithGj9cp9hCDHfA2HVOf9ie89CEW6MBdVDekw5lBPuEXWyz-gfKF3yFniHvcxDJAyHfoprN9Dvd_OUGf82Y7e61Wm8Vy9ryqgBFRKt-q2vEucB6EcpZpKbjVrTPaB0GYYjTUTnvhnNU1b7XyRrnWSyksdR2zfIIeLr0QQtgdh_OS4bT7P4T_AtJEWL0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Joint Signal Estimation and Nonlinear Topology Identification from Noisy Data with Missing Entries</title><source>IEEE Xplore All Conference Series</source><creator>Roy, Kevin ; Lopez-Ramos, Luis Miguel ; Beferull-Lozano, Baltasar</creator><creatorcontrib>Roy, Kevin ; Lopez-Ramos, Luis Miguel ; Beferull-Lozano, Baltasar</creatorcontrib><description>Topology identification from multiple time series has been proved to be useful for system identification, anomaly detection, denoising, and data completion. Vector autoregressive (VAR) methods have proved well in identifying directed topology from complex networks. The task of inferring topology in the presence of noise and missing observations has been studied for linear models. As a first approach to joint signal estimation and topology identification with a nonlinear model, this paper proposes a method to do so under the modelling assumption that signals are generated by a sparse VAR model in a latent space and then transformed by a set of invertible, component-wise nonlinearities. A non convex optimization problem is formed with lasso regularisation and solved via block coordinate descent (BCD). Initial experiments conducted on synthetic data sets show the identifying capability of the proposed method.</description><identifier>EISSN: 2576-2303</identifier><identifier>EISBN: 1665459069</identifier><identifier>EISBN: 9781665459068</identifier><identifier>DOI: 10.1109/IEEECONF56349.2022.10051968</identifier><language>eng</language><publisher>IEEE</publisher><subject>Estimation ; invertible neural network ; missing data ; Network topology ; nonlinear topology identification ; Reactive power ; Sensors ; System identification ; Time series analysis ; Topology ; Vector autoregression</subject><ispartof>2022 56th Asilomar Conference on Signals, Systems, and Computers, 2022, p.436-440</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10051968$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23929,23930,25139,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10051968$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Roy, Kevin</creatorcontrib><creatorcontrib>Lopez-Ramos, Luis Miguel</creatorcontrib><creatorcontrib>Beferull-Lozano, Baltasar</creatorcontrib><title>Joint Signal Estimation and Nonlinear Topology Identification from Noisy Data with Missing Entries</title><title>2022 56th Asilomar Conference on Signals, Systems, and Computers</title><addtitle>IEEECONF</addtitle><description>Topology identification from multiple time series has been proved to be useful for system identification, anomaly detection, denoising, and data completion. Vector autoregressive (VAR) methods have proved well in identifying directed topology from complex networks. The task of inferring topology in the presence of noise and missing observations has been studied for linear models. As a first approach to joint signal estimation and topology identification with a nonlinear model, this paper proposes a method to do so under the modelling assumption that signals are generated by a sparse VAR model in a latent space and then transformed by a set of invertible, component-wise nonlinearities. A non convex optimization problem is formed with lasso regularisation and solved via block coordinate descent (BCD). Initial experiments conducted on synthetic data sets show the identifying capability of the proposed method.</description><subject>Estimation</subject><subject>invertible neural network</subject><subject>missing data</subject><subject>Network topology</subject><subject>nonlinear topology identification</subject><subject>Reactive power</subject><subject>Sensors</subject><subject>System identification</subject><subject>Time series analysis</subject><subject>Topology</subject><subject>Vector autoregression</subject><issn>2576-2303</issn><isbn>1665459069</isbn><isbn>9781665459068</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo10E1PAjEYBOBqYiKg_8BDE8-L_e72aHBBDMJBPJNu28XXLC3ZNjH8e0nQ01yeTDKD0CMlU0qJeVo2TTPbrOdScWGmjDA2pYRIalR9hcZUKSmkIcpcoxGTWlWME36Lxjl_E3LWNRuh9i1BLPgD9tH2uMkFDrZAithGj9cp9hCDHfA2HVOf9ie89CEW6MBdVDekw5lBPuEXWyz-gfKF3yFniHvcxDJAyHfoprN9Dvd_OUGf82Y7e61Wm8Vy9ryqgBFRKt-q2vEucB6EcpZpKbjVrTPaB0GYYjTUTnvhnNU1b7XyRrnWSyksdR2zfIIeLr0QQtgdh_OS4bT7P4T_AtJEWL0</recordid><startdate>20221031</startdate><enddate>20221031</enddate><creator>Roy, Kevin</creator><creator>Lopez-Ramos, Luis Miguel</creator><creator>Beferull-Lozano, Baltasar</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20221031</creationdate><title>Joint Signal Estimation and Nonlinear Topology Identification from Noisy Data with Missing Entries</title><author>Roy, Kevin ; Lopez-Ramos, Luis Miguel ; Beferull-Lozano, Baltasar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-db68c3fe33e46ca27543a7bc97de402621e8c7d4cca783b76d96cbd554a1cf2a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Estimation</topic><topic>invertible neural network</topic><topic>missing data</topic><topic>Network topology</topic><topic>nonlinear topology identification</topic><topic>Reactive power</topic><topic>Sensors</topic><topic>System identification</topic><topic>Time series analysis</topic><topic>Topology</topic><topic>Vector autoregression</topic><toplevel>online_resources</toplevel><creatorcontrib>Roy, Kevin</creatorcontrib><creatorcontrib>Lopez-Ramos, Luis Miguel</creatorcontrib><creatorcontrib>Beferull-Lozano, Baltasar</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roy, Kevin</au><au>Lopez-Ramos, Luis Miguel</au><au>Beferull-Lozano, Baltasar</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Joint Signal Estimation and Nonlinear Topology Identification from Noisy Data with Missing Entries</atitle><btitle>2022 56th Asilomar Conference on Signals, Systems, and Computers</btitle><stitle>IEEECONF</stitle><date>2022-10-31</date><risdate>2022</risdate><spage>436</spage><epage>440</epage><pages>436-440</pages><eissn>2576-2303</eissn><eisbn>1665459069</eisbn><eisbn>9781665459068</eisbn><abstract>Topology identification from multiple time series has been proved to be useful for system identification, anomaly detection, denoising, and data completion. Vector autoregressive (VAR) methods have proved well in identifying directed topology from complex networks. The task of inferring topology in the presence of noise and missing observations has been studied for linear models. As a first approach to joint signal estimation and topology identification with a nonlinear model, this paper proposes a method to do so under the modelling assumption that signals are generated by a sparse VAR model in a latent space and then transformed by a set of invertible, component-wise nonlinearities. A non convex optimization problem is formed with lasso regularisation and solved via block coordinate descent (BCD). Initial experiments conducted on synthetic data sets show the identifying capability of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/IEEECONF56349.2022.10051968</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2576-2303
ispartof 2022 56th Asilomar Conference on Signals, Systems, and Computers, 2022, p.436-440
issn 2576-2303
language eng
recordid cdi_ieee_primary_10051968
source IEEE Xplore All Conference Series
subjects Estimation
invertible neural network
missing data
Network topology
nonlinear topology identification
Reactive power
Sensors
System identification
Time series analysis
Topology
Vector autoregression
title Joint Signal Estimation and Nonlinear Topology Identification from Noisy Data with Missing Entries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A30%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Joint%20Signal%20Estimation%20and%20Nonlinear%20Topology%20Identification%20from%20Noisy%20Data%20with%20Missing%20Entries&rft.btitle=2022%2056th%20Asilomar%20Conference%20on%20Signals,%20Systems,%20and%20Computers&rft.au=Roy,%20Kevin&rft.date=2022-10-31&rft.spage=436&rft.epage=440&rft.pages=436-440&rft.eissn=2576-2303&rft_id=info:doi/10.1109/IEEECONF56349.2022.10051968&rft.eisbn=1665459069&rft.eisbn_list=9781665459068&rft_dat=%3Cieee_CHZPO%3E10051968%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-db68c3fe33e46ca27543a7bc97de402621e8c7d4cca783b76d96cbd554a1cf2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10051968&rfr_iscdi=true