Loading…
Joint Signal Estimation and Nonlinear Topology Identification from Noisy Data with Missing Entries
Topology identification from multiple time series has been proved to be useful for system identification, anomaly detection, denoising, and data completion. Vector autoregressive (VAR) methods have proved well in identifying directed topology from complex networks. The task of inferring topology in...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 440 |
container_issue | |
container_start_page | 436 |
container_title | |
container_volume | |
creator | Roy, Kevin Lopez-Ramos, Luis Miguel Beferull-Lozano, Baltasar |
description | Topology identification from multiple time series has been proved to be useful for system identification, anomaly detection, denoising, and data completion. Vector autoregressive (VAR) methods have proved well in identifying directed topology from complex networks. The task of inferring topology in the presence of noise and missing observations has been studied for linear models. As a first approach to joint signal estimation and topology identification with a nonlinear model, this paper proposes a method to do so under the modelling assumption that signals are generated by a sparse VAR model in a latent space and then transformed by a set of invertible, component-wise nonlinearities. A non convex optimization problem is formed with lasso regularisation and solved via block coordinate descent (BCD). Initial experiments conducted on synthetic data sets show the identifying capability of the proposed method. |
doi_str_mv | 10.1109/IEEECONF56349.2022.10051968 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10051968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10051968</ieee_id><sourcerecordid>10051968</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-db68c3fe33e46ca27543a7bc97de402621e8c7d4cca783b76d96cbd554a1cf2a3</originalsourceid><addsrcrecordid>eNo10E1PAjEYBOBqYiKg_8BDE8-L_e72aHBBDMJBPJNu28XXLC3ZNjH8e0nQ01yeTDKD0CMlU0qJeVo2TTPbrOdScWGmjDA2pYRIalR9hcZUKSmkIcpcoxGTWlWME36Lxjl_E3LWNRuh9i1BLPgD9tH2uMkFDrZAithGj9cp9hCDHfA2HVOf9ie89CEW6MBdVDekw5lBPuEXWyz-gfKF3yFniHvcxDJAyHfoprN9Dvd_OUGf82Y7e61Wm8Vy9ryqgBFRKt-q2vEucB6EcpZpKbjVrTPaB0GYYjTUTnvhnNU1b7XyRrnWSyksdR2zfIIeLr0QQtgdh_OS4bT7P4T_AtJEWL0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Joint Signal Estimation and Nonlinear Topology Identification from Noisy Data with Missing Entries</title><source>IEEE Xplore All Conference Series</source><creator>Roy, Kevin ; Lopez-Ramos, Luis Miguel ; Beferull-Lozano, Baltasar</creator><creatorcontrib>Roy, Kevin ; Lopez-Ramos, Luis Miguel ; Beferull-Lozano, Baltasar</creatorcontrib><description>Topology identification from multiple time series has been proved to be useful for system identification, anomaly detection, denoising, and data completion. Vector autoregressive (VAR) methods have proved well in identifying directed topology from complex networks. The task of inferring topology in the presence of noise and missing observations has been studied for linear models. As a first approach to joint signal estimation and topology identification with a nonlinear model, this paper proposes a method to do so under the modelling assumption that signals are generated by a sparse VAR model in a latent space and then transformed by a set of invertible, component-wise nonlinearities. A non convex optimization problem is formed with lasso regularisation and solved via block coordinate descent (BCD). Initial experiments conducted on synthetic data sets show the identifying capability of the proposed method.</description><identifier>EISSN: 2576-2303</identifier><identifier>EISBN: 1665459069</identifier><identifier>EISBN: 9781665459068</identifier><identifier>DOI: 10.1109/IEEECONF56349.2022.10051968</identifier><language>eng</language><publisher>IEEE</publisher><subject>Estimation ; invertible neural network ; missing data ; Network topology ; nonlinear topology identification ; Reactive power ; Sensors ; System identification ; Time series analysis ; Topology ; Vector autoregression</subject><ispartof>2022 56th Asilomar Conference on Signals, Systems, and Computers, 2022, p.436-440</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10051968$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23929,23930,25139,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10051968$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Roy, Kevin</creatorcontrib><creatorcontrib>Lopez-Ramos, Luis Miguel</creatorcontrib><creatorcontrib>Beferull-Lozano, Baltasar</creatorcontrib><title>Joint Signal Estimation and Nonlinear Topology Identification from Noisy Data with Missing Entries</title><title>2022 56th Asilomar Conference on Signals, Systems, and Computers</title><addtitle>IEEECONF</addtitle><description>Topology identification from multiple time series has been proved to be useful for system identification, anomaly detection, denoising, and data completion. Vector autoregressive (VAR) methods have proved well in identifying directed topology from complex networks. The task of inferring topology in the presence of noise and missing observations has been studied for linear models. As a first approach to joint signal estimation and topology identification with a nonlinear model, this paper proposes a method to do so under the modelling assumption that signals are generated by a sparse VAR model in a latent space and then transformed by a set of invertible, component-wise nonlinearities. A non convex optimization problem is formed with lasso regularisation and solved via block coordinate descent (BCD). Initial experiments conducted on synthetic data sets show the identifying capability of the proposed method.</description><subject>Estimation</subject><subject>invertible neural network</subject><subject>missing data</subject><subject>Network topology</subject><subject>nonlinear topology identification</subject><subject>Reactive power</subject><subject>Sensors</subject><subject>System identification</subject><subject>Time series analysis</subject><subject>Topology</subject><subject>Vector autoregression</subject><issn>2576-2303</issn><isbn>1665459069</isbn><isbn>9781665459068</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo10E1PAjEYBOBqYiKg_8BDE8-L_e72aHBBDMJBPJNu28XXLC3ZNjH8e0nQ01yeTDKD0CMlU0qJeVo2TTPbrOdScWGmjDA2pYRIalR9hcZUKSmkIcpcoxGTWlWME36Lxjl_E3LWNRuh9i1BLPgD9tH2uMkFDrZAithGj9cp9hCDHfA2HVOf9ie89CEW6MBdVDekw5lBPuEXWyz-gfKF3yFniHvcxDJAyHfoprN9Dvd_OUGf82Y7e61Wm8Vy9ryqgBFRKt-q2vEucB6EcpZpKbjVrTPaB0GYYjTUTnvhnNU1b7XyRrnWSyksdR2zfIIeLr0QQtgdh_OS4bT7P4T_AtJEWL0</recordid><startdate>20221031</startdate><enddate>20221031</enddate><creator>Roy, Kevin</creator><creator>Lopez-Ramos, Luis Miguel</creator><creator>Beferull-Lozano, Baltasar</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20221031</creationdate><title>Joint Signal Estimation and Nonlinear Topology Identification from Noisy Data with Missing Entries</title><author>Roy, Kevin ; Lopez-Ramos, Luis Miguel ; Beferull-Lozano, Baltasar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-db68c3fe33e46ca27543a7bc97de402621e8c7d4cca783b76d96cbd554a1cf2a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Estimation</topic><topic>invertible neural network</topic><topic>missing data</topic><topic>Network topology</topic><topic>nonlinear topology identification</topic><topic>Reactive power</topic><topic>Sensors</topic><topic>System identification</topic><topic>Time series analysis</topic><topic>Topology</topic><topic>Vector autoregression</topic><toplevel>online_resources</toplevel><creatorcontrib>Roy, Kevin</creatorcontrib><creatorcontrib>Lopez-Ramos, Luis Miguel</creatorcontrib><creatorcontrib>Beferull-Lozano, Baltasar</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roy, Kevin</au><au>Lopez-Ramos, Luis Miguel</au><au>Beferull-Lozano, Baltasar</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Joint Signal Estimation and Nonlinear Topology Identification from Noisy Data with Missing Entries</atitle><btitle>2022 56th Asilomar Conference on Signals, Systems, and Computers</btitle><stitle>IEEECONF</stitle><date>2022-10-31</date><risdate>2022</risdate><spage>436</spage><epage>440</epage><pages>436-440</pages><eissn>2576-2303</eissn><eisbn>1665459069</eisbn><eisbn>9781665459068</eisbn><abstract>Topology identification from multiple time series has been proved to be useful for system identification, anomaly detection, denoising, and data completion. Vector autoregressive (VAR) methods have proved well in identifying directed topology from complex networks. The task of inferring topology in the presence of noise and missing observations has been studied for linear models. As a first approach to joint signal estimation and topology identification with a nonlinear model, this paper proposes a method to do so under the modelling assumption that signals are generated by a sparse VAR model in a latent space and then transformed by a set of invertible, component-wise nonlinearities. A non convex optimization problem is formed with lasso regularisation and solved via block coordinate descent (BCD). Initial experiments conducted on synthetic data sets show the identifying capability of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/IEEECONF56349.2022.10051968</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2576-2303 |
ispartof | 2022 56th Asilomar Conference on Signals, Systems, and Computers, 2022, p.436-440 |
issn | 2576-2303 |
language | eng |
recordid | cdi_ieee_primary_10051968 |
source | IEEE Xplore All Conference Series |
subjects | Estimation invertible neural network missing data Network topology nonlinear topology identification Reactive power Sensors System identification Time series analysis Topology Vector autoregression |
title | Joint Signal Estimation and Nonlinear Topology Identification from Noisy Data with Missing Entries |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A30%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Joint%20Signal%20Estimation%20and%20Nonlinear%20Topology%20Identification%20from%20Noisy%20Data%20with%20Missing%20Entries&rft.btitle=2022%2056th%20Asilomar%20Conference%20on%20Signals,%20Systems,%20and%20Computers&rft.au=Roy,%20Kevin&rft.date=2022-10-31&rft.spage=436&rft.epage=440&rft.pages=436-440&rft.eissn=2576-2303&rft_id=info:doi/10.1109/IEEECONF56349.2022.10051968&rft.eisbn=1665459069&rft.eisbn_list=9781665459068&rft_dat=%3Cieee_CHZPO%3E10051968%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-db68c3fe33e46ca27543a7bc97de402621e8c7d4cca783b76d96cbd554a1cf2a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10051968&rfr_iscdi=true |