Loading…
On the Primal Feasibility in Dual Decomposition Methods Under Additive and Bounded Errors
With the unprecedented growth of signal processing and machine learning application domains, there has been a tremendous expansion of interest in distributed optimization methods to cope with the underlying large-scale problems. Nonetheless, inevitable system-specific challenges such as limited comp...
Saved in:
Published in: | IEEE transactions on signal processing 2023, Vol.71, p.655-669 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c325t-361f8eac323d63831991aee60d67b1dc104105967f10792407888e11d13ea99a3 |
container_end_page | 669 |
container_issue | |
container_start_page | 655 |
container_title | IEEE transactions on signal processing |
container_volume | 71 |
creator | Abeynanda, Hansi Weeraddana, Chathuranga Lanel, G. H. J. Fischione, Carlo |
description | With the unprecedented growth of signal processing and machine learning application domains, there has been a tremendous expansion of interest in distributed optimization methods to cope with the underlying large-scale problems. Nonetheless, inevitable system-specific challenges such as limited computational power, limited communication, latency requirements, measurement errors, and noises in wireless channels impose restrictions on the exactness of the underlying algorithms. Such restrictions have appealed to the exploration of algorithms' convergence behaviors under inexact settings. Despite the extensive research conducted in the area, it seems that the analysis of convergences of dual decomposition methods concerning primal optimality violations, together with dual optimality violations is less investigated. Here, we provide a systematic exposition of the convergence of feasible points in dual decomposition methods under inexact settings, for an important class of global consensus optimization problems. Convergences and the rate of convergences of the algorithms are mathematically substantiated, not only from a dual-domain standpoint but also from a primal-domain standpoint. Analytical results show that the algorithms converge to a neighborhood of optimality, the size of which depends on the level of underlying distortions. |
doi_str_mv | 10.1109/TSP.2023.3249043 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10052751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10052751</ieee_id><sourcerecordid>2792133431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-361f8eac323d63831991aee60d67b1dc104105967f10792407888e11d13ea99a3</originalsourceid><addsrcrecordid>eNpNkMtLAzEQxhdRsD7uHjwEPG_NJNns5litL1BasIqeQrqZ2tS6qcmu0v_elIp4mpmP37y-LDsB2geg6nzyOO4zynifM6Go4DtZD5SAnIpS7qacFjwvqvJlPzuIcUEpCKFkL3sdNaSdIxkH92GW5BpNdFO3dO2auIYMu6QNsfYfKx9d63xDHrCdexvJU2MxkIG1Sf5CYhpLLnyXREuuQvAhHmV7M7OMePwbD7On66vJ5W1-P7q5uxzc5zVnRZtzCbMKTSq4lbzioBQYREmtLKdga6Ai3a5kOQNaKiZoWVUVAljgaJQy_DDLt3PjN666qV5tPglr7Y3TQ_c80D686fd2rjmTkqnEn235VfCfHcZWL3wXmnSiZmkBcC44JIpuqTr4GAPO_uYC1RvDdTJcbwzXv4anltNti0PEfzgtWFkA_wF1tXrb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792133431</pqid></control><display><type>article</type><title>On the Primal Feasibility in Dual Decomposition Methods Under Additive and Bounded Errors</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Abeynanda, Hansi ; Weeraddana, Chathuranga ; Lanel, G. H. J. ; Fischione, Carlo</creator><creatorcontrib>Abeynanda, Hansi ; Weeraddana, Chathuranga ; Lanel, G. H. J. ; Fischione, Carlo</creatorcontrib><description>With the unprecedented growth of signal processing and machine learning application domains, there has been a tremendous expansion of interest in distributed optimization methods to cope with the underlying large-scale problems. Nonetheless, inevitable system-specific challenges such as limited computational power, limited communication, latency requirements, measurement errors, and noises in wireless channels impose restrictions on the exactness of the underlying algorithms. Such restrictions have appealed to the exploration of algorithms' convergence behaviors under inexact settings. Despite the extensive research conducted in the area, it seems that the analysis of convergences of dual decomposition methods concerning primal optimality violations, together with dual optimality violations is less investigated. Here, we provide a systematic exposition of the convergence of feasible points in dual decomposition methods under inexact settings, for an important class of global consensus optimization problems. Convergences and the rate of convergences of the algorithms are mathematically substantiated, not only from a dual-domain standpoint but also from a primal-domain standpoint. Analytical results show that the algorithms converge to a neighborhood of optimality, the size of which depends on the level of underlying distortions.</description><identifier>ISSN: 1053-587X</identifier><identifier>ISSN: 1941-0476</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2023.3249043</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Convergence ; Decomposition ; Distortion ; Distributed optimization ; Domains ; Errors ; Feasibility ; federated learning ; inexact coordination ; Linear programming ; Machine learning ; Optimization ; Quantization (signal) ; Signal processing algorithms ; Wireless communication</subject><ispartof>IEEE transactions on signal processing, 2023, Vol.71, p.655-669</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-361f8eac323d63831991aee60d67b1dc104105967f10792407888e11d13ea99a3</cites><orcidid>0000-0002-0295-0515 ; 0000-0001-9810-3478 ; 0000-0002-0623-0208 ; 0000-0001-5991-6548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10052751$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-326629$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Abeynanda, Hansi</creatorcontrib><creatorcontrib>Weeraddana, Chathuranga</creatorcontrib><creatorcontrib>Lanel, G. H. J.</creatorcontrib><creatorcontrib>Fischione, Carlo</creatorcontrib><title>On the Primal Feasibility in Dual Decomposition Methods Under Additive and Bounded Errors</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>With the unprecedented growth of signal processing and machine learning application domains, there has been a tremendous expansion of interest in distributed optimization methods to cope with the underlying large-scale problems. Nonetheless, inevitable system-specific challenges such as limited computational power, limited communication, latency requirements, measurement errors, and noises in wireless channels impose restrictions on the exactness of the underlying algorithms. Such restrictions have appealed to the exploration of algorithms' convergence behaviors under inexact settings. Despite the extensive research conducted in the area, it seems that the analysis of convergences of dual decomposition methods concerning primal optimality violations, together with dual optimality violations is less investigated. Here, we provide a systematic exposition of the convergence of feasible points in dual decomposition methods under inexact settings, for an important class of global consensus optimization problems. Convergences and the rate of convergences of the algorithms are mathematically substantiated, not only from a dual-domain standpoint but also from a primal-domain standpoint. Analytical results show that the algorithms converge to a neighborhood of optimality, the size of which depends on the level of underlying distortions.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Decomposition</subject><subject>Distortion</subject><subject>Distributed optimization</subject><subject>Domains</subject><subject>Errors</subject><subject>Feasibility</subject><subject>federated learning</subject><subject>inexact coordination</subject><subject>Linear programming</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Quantization (signal)</subject><subject>Signal processing algorithms</subject><subject>Wireless communication</subject><issn>1053-587X</issn><issn>1941-0476</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkMtLAzEQxhdRsD7uHjwEPG_NJNns5litL1BasIqeQrqZ2tS6qcmu0v_elIp4mpmP37y-LDsB2geg6nzyOO4zynifM6Go4DtZD5SAnIpS7qacFjwvqvJlPzuIcUEpCKFkL3sdNaSdIxkH92GW5BpNdFO3dO2auIYMu6QNsfYfKx9d63xDHrCdexvJU2MxkIG1Sf5CYhpLLnyXREuuQvAhHmV7M7OMePwbD7On66vJ5W1-P7q5uxzc5zVnRZtzCbMKTSq4lbzioBQYREmtLKdga6Ai3a5kOQNaKiZoWVUVAljgaJQy_DDLt3PjN666qV5tPglr7Y3TQ_c80D686fd2rjmTkqnEn235VfCfHcZWL3wXmnSiZmkBcC44JIpuqTr4GAPO_uYC1RvDdTJcbwzXv4anltNti0PEfzgtWFkA_wF1tXrb</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Abeynanda, Hansi</creator><creator>Weeraddana, Chathuranga</creator><creator>Lanel, G. H. J.</creator><creator>Fischione, Carlo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><orcidid>https://orcid.org/0000-0002-0295-0515</orcidid><orcidid>https://orcid.org/0000-0001-9810-3478</orcidid><orcidid>https://orcid.org/0000-0002-0623-0208</orcidid><orcidid>https://orcid.org/0000-0001-5991-6548</orcidid></search><sort><creationdate>2023</creationdate><title>On the Primal Feasibility in Dual Decomposition Methods Under Additive and Bounded Errors</title><author>Abeynanda, Hansi ; Weeraddana, Chathuranga ; Lanel, G. H. J. ; Fischione, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-361f8eac323d63831991aee60d67b1dc104105967f10792407888e11d13ea99a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Decomposition</topic><topic>Distortion</topic><topic>Distributed optimization</topic><topic>Domains</topic><topic>Errors</topic><topic>Feasibility</topic><topic>federated learning</topic><topic>inexact coordination</topic><topic>Linear programming</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Quantization (signal)</topic><topic>Signal processing algorithms</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abeynanda, Hansi</creatorcontrib><creatorcontrib>Weeraddana, Chathuranga</creatorcontrib><creatorcontrib>Lanel, G. H. J.</creatorcontrib><creatorcontrib>Fischione, Carlo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abeynanda, Hansi</au><au>Weeraddana, Chathuranga</au><au>Lanel, G. H. J.</au><au>Fischione, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Primal Feasibility in Dual Decomposition Methods Under Additive and Bounded Errors</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2023</date><risdate>2023</risdate><volume>71</volume><spage>655</spage><epage>669</epage><pages>655-669</pages><issn>1053-587X</issn><issn>1941-0476</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>With the unprecedented growth of signal processing and machine learning application domains, there has been a tremendous expansion of interest in distributed optimization methods to cope with the underlying large-scale problems. Nonetheless, inevitable system-specific challenges such as limited computational power, limited communication, latency requirements, measurement errors, and noises in wireless channels impose restrictions on the exactness of the underlying algorithms. Such restrictions have appealed to the exploration of algorithms' convergence behaviors under inexact settings. Despite the extensive research conducted in the area, it seems that the analysis of convergences of dual decomposition methods concerning primal optimality violations, together with dual optimality violations is less investigated. Here, we provide a systematic exposition of the convergence of feasible points in dual decomposition methods under inexact settings, for an important class of global consensus optimization problems. Convergences and the rate of convergences of the algorithms are mathematically substantiated, not only from a dual-domain standpoint but also from a primal-domain standpoint. Analytical results show that the algorithms converge to a neighborhood of optimality, the size of which depends on the level of underlying distortions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2023.3249043</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0295-0515</orcidid><orcidid>https://orcid.org/0000-0001-9810-3478</orcidid><orcidid>https://orcid.org/0000-0002-0623-0208</orcidid><orcidid>https://orcid.org/0000-0001-5991-6548</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2023, Vol.71, p.655-669 |
issn | 1053-587X 1941-0476 1941-0476 |
language | eng |
recordid | cdi_ieee_primary_10052751 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Convergence Decomposition Distortion Distributed optimization Domains Errors Feasibility federated learning inexact coordination Linear programming Machine learning Optimization Quantization (signal) Signal processing algorithms Wireless communication |
title | On the Primal Feasibility in Dual Decomposition Methods Under Additive and Bounded Errors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Primal%20Feasibility%20in%20Dual%20Decomposition%20Methods%20Under%20Additive%20and%20Bounded%20Errors&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Abeynanda,%20Hansi&rft.date=2023&rft.volume=71&rft.spage=655&rft.epage=669&rft.pages=655-669&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2023.3249043&rft_dat=%3Cproquest_ieee_%3E2792133431%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-361f8eac323d63831991aee60d67b1dc104105967f10792407888e11d13ea99a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2792133431&rft_id=info:pmid/&rft_ieee_id=10052751&rfr_iscdi=true |