Loading…

On the Primal Feasibility in Dual Decomposition Methods Under Additive and Bounded Errors

With the unprecedented growth of signal processing and machine learning application domains, there has been a tremendous expansion of interest in distributed optimization methods to cope with the underlying large-scale problems. Nonetheless, inevitable system-specific challenges such as limited comp...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2023, Vol.71, p.655-669
Main Authors: Abeynanda, Hansi, Weeraddana, Chathuranga, Lanel, G. H. J., Fischione, Carlo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c325t-361f8eac323d63831991aee60d67b1dc104105967f10792407888e11d13ea99a3
container_end_page 669
container_issue
container_start_page 655
container_title IEEE transactions on signal processing
container_volume 71
creator Abeynanda, Hansi
Weeraddana, Chathuranga
Lanel, G. H. J.
Fischione, Carlo
description With the unprecedented growth of signal processing and machine learning application domains, there has been a tremendous expansion of interest in distributed optimization methods to cope with the underlying large-scale problems. Nonetheless, inevitable system-specific challenges such as limited computational power, limited communication, latency requirements, measurement errors, and noises in wireless channels impose restrictions on the exactness of the underlying algorithms. Such restrictions have appealed to the exploration of algorithms' convergence behaviors under inexact settings. Despite the extensive research conducted in the area, it seems that the analysis of convergences of dual decomposition methods concerning primal optimality violations, together with dual optimality violations is less investigated. Here, we provide a systematic exposition of the convergence of feasible points in dual decomposition methods under inexact settings, for an important class of global consensus optimization problems. Convergences and the rate of convergences of the algorithms are mathematically substantiated, not only from a dual-domain standpoint but also from a primal-domain standpoint. Analytical results show that the algorithms converge to a neighborhood of optimality, the size of which depends on the level of underlying distortions.
doi_str_mv 10.1109/TSP.2023.3249043
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10052751</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10052751</ieee_id><sourcerecordid>2792133431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-361f8eac323d63831991aee60d67b1dc104105967f10792407888e11d13ea99a3</originalsourceid><addsrcrecordid>eNpNkMtLAzEQxhdRsD7uHjwEPG_NJNns5litL1BasIqeQrqZ2tS6qcmu0v_elIp4mpmP37y-LDsB2geg6nzyOO4zynifM6Go4DtZD5SAnIpS7qacFjwvqvJlPzuIcUEpCKFkL3sdNaSdIxkH92GW5BpNdFO3dO2auIYMu6QNsfYfKx9d63xDHrCdexvJU2MxkIG1Sf5CYhpLLnyXREuuQvAhHmV7M7OMePwbD7On66vJ5W1-P7q5uxzc5zVnRZtzCbMKTSq4lbzioBQYREmtLKdga6Ai3a5kOQNaKiZoWVUVAljgaJQy_DDLt3PjN666qV5tPglr7Y3TQ_c80D686fd2rjmTkqnEn235VfCfHcZWL3wXmnSiZmkBcC44JIpuqTr4GAPO_uYC1RvDdTJcbwzXv4anltNti0PEfzgtWFkA_wF1tXrb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2792133431</pqid></control><display><type>article</type><title>On the Primal Feasibility in Dual Decomposition Methods Under Additive and Bounded Errors</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Abeynanda, Hansi ; Weeraddana, Chathuranga ; Lanel, G. H. J. ; Fischione, Carlo</creator><creatorcontrib>Abeynanda, Hansi ; Weeraddana, Chathuranga ; Lanel, G. H. J. ; Fischione, Carlo</creatorcontrib><description>With the unprecedented growth of signal processing and machine learning application domains, there has been a tremendous expansion of interest in distributed optimization methods to cope with the underlying large-scale problems. Nonetheless, inevitable system-specific challenges such as limited computational power, limited communication, latency requirements, measurement errors, and noises in wireless channels impose restrictions on the exactness of the underlying algorithms. Such restrictions have appealed to the exploration of algorithms' convergence behaviors under inexact settings. Despite the extensive research conducted in the area, it seems that the analysis of convergences of dual decomposition methods concerning primal optimality violations, together with dual optimality violations is less investigated. Here, we provide a systematic exposition of the convergence of feasible points in dual decomposition methods under inexact settings, for an important class of global consensus optimization problems. Convergences and the rate of convergences of the algorithms are mathematically substantiated, not only from a dual-domain standpoint but also from a primal-domain standpoint. Analytical results show that the algorithms converge to a neighborhood of optimality, the size of which depends on the level of underlying distortions.</description><identifier>ISSN: 1053-587X</identifier><identifier>ISSN: 1941-0476</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2023.3249043</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Convergence ; Decomposition ; Distortion ; Distributed optimization ; Domains ; Errors ; Feasibility ; federated learning ; inexact coordination ; Linear programming ; Machine learning ; Optimization ; Quantization (signal) ; Signal processing algorithms ; Wireless communication</subject><ispartof>IEEE transactions on signal processing, 2023, Vol.71, p.655-669</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c325t-361f8eac323d63831991aee60d67b1dc104105967f10792407888e11d13ea99a3</cites><orcidid>0000-0002-0295-0515 ; 0000-0001-9810-3478 ; 0000-0002-0623-0208 ; 0000-0001-5991-6548</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10052751$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,885,4024,27923,27924,27925,54796</link.rule.ids><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-326629$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Abeynanda, Hansi</creatorcontrib><creatorcontrib>Weeraddana, Chathuranga</creatorcontrib><creatorcontrib>Lanel, G. H. J.</creatorcontrib><creatorcontrib>Fischione, Carlo</creatorcontrib><title>On the Primal Feasibility in Dual Decomposition Methods Under Additive and Bounded Errors</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>With the unprecedented growth of signal processing and machine learning application domains, there has been a tremendous expansion of interest in distributed optimization methods to cope with the underlying large-scale problems. Nonetheless, inevitable system-specific challenges such as limited computational power, limited communication, latency requirements, measurement errors, and noises in wireless channels impose restrictions on the exactness of the underlying algorithms. Such restrictions have appealed to the exploration of algorithms' convergence behaviors under inexact settings. Despite the extensive research conducted in the area, it seems that the analysis of convergences of dual decomposition methods concerning primal optimality violations, together with dual optimality violations is less investigated. Here, we provide a systematic exposition of the convergence of feasible points in dual decomposition methods under inexact settings, for an important class of global consensus optimization problems. Convergences and the rate of convergences of the algorithms are mathematically substantiated, not only from a dual-domain standpoint but also from a primal-domain standpoint. Analytical results show that the algorithms converge to a neighborhood of optimality, the size of which depends on the level of underlying distortions.</description><subject>Algorithms</subject><subject>Convergence</subject><subject>Decomposition</subject><subject>Distortion</subject><subject>Distributed optimization</subject><subject>Domains</subject><subject>Errors</subject><subject>Feasibility</subject><subject>federated learning</subject><subject>inexact coordination</subject><subject>Linear programming</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Quantization (signal)</subject><subject>Signal processing algorithms</subject><subject>Wireless communication</subject><issn>1053-587X</issn><issn>1941-0476</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkMtLAzEQxhdRsD7uHjwEPG_NJNns5litL1BasIqeQrqZ2tS6qcmu0v_elIp4mpmP37y-LDsB2geg6nzyOO4zynifM6Go4DtZD5SAnIpS7qacFjwvqvJlPzuIcUEpCKFkL3sdNaSdIxkH92GW5BpNdFO3dO2auIYMu6QNsfYfKx9d63xDHrCdexvJU2MxkIG1Sf5CYhpLLnyXREuuQvAhHmV7M7OMePwbD7On66vJ5W1-P7q5uxzc5zVnRZtzCbMKTSq4lbzioBQYREmtLKdga6Ai3a5kOQNaKiZoWVUVAljgaJQy_DDLt3PjN666qV5tPglr7Y3TQ_c80D686fd2rjmTkqnEn235VfCfHcZWL3wXmnSiZmkBcC44JIpuqTr4GAPO_uYC1RvDdTJcbwzXv4anltNti0PEfzgtWFkA_wF1tXrb</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Abeynanda, Hansi</creator><creator>Weeraddana, Chathuranga</creator><creator>Lanel, G. H. J.</creator><creator>Fischione, Carlo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8V</scope><orcidid>https://orcid.org/0000-0002-0295-0515</orcidid><orcidid>https://orcid.org/0000-0001-9810-3478</orcidid><orcidid>https://orcid.org/0000-0002-0623-0208</orcidid><orcidid>https://orcid.org/0000-0001-5991-6548</orcidid></search><sort><creationdate>2023</creationdate><title>On the Primal Feasibility in Dual Decomposition Methods Under Additive and Bounded Errors</title><author>Abeynanda, Hansi ; Weeraddana, Chathuranga ; Lanel, G. H. J. ; Fischione, Carlo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-361f8eac323d63831991aee60d67b1dc104105967f10792407888e11d13ea99a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Convergence</topic><topic>Decomposition</topic><topic>Distortion</topic><topic>Distributed optimization</topic><topic>Domains</topic><topic>Errors</topic><topic>Feasibility</topic><topic>federated learning</topic><topic>inexact coordination</topic><topic>Linear programming</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Quantization (signal)</topic><topic>Signal processing algorithms</topic><topic>Wireless communication</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abeynanda, Hansi</creatorcontrib><creatorcontrib>Weeraddana, Chathuranga</creatorcontrib><creatorcontrib>Lanel, G. H. J.</creatorcontrib><creatorcontrib>Fischione, Carlo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Kungliga Tekniska Högskolan</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abeynanda, Hansi</au><au>Weeraddana, Chathuranga</au><au>Lanel, G. H. J.</au><au>Fischione, Carlo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Primal Feasibility in Dual Decomposition Methods Under Additive and Bounded Errors</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2023</date><risdate>2023</risdate><volume>71</volume><spage>655</spage><epage>669</epage><pages>655-669</pages><issn>1053-587X</issn><issn>1941-0476</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>With the unprecedented growth of signal processing and machine learning application domains, there has been a tremendous expansion of interest in distributed optimization methods to cope with the underlying large-scale problems. Nonetheless, inevitable system-specific challenges such as limited computational power, limited communication, latency requirements, measurement errors, and noises in wireless channels impose restrictions on the exactness of the underlying algorithms. Such restrictions have appealed to the exploration of algorithms' convergence behaviors under inexact settings. Despite the extensive research conducted in the area, it seems that the analysis of convergences of dual decomposition methods concerning primal optimality violations, together with dual optimality violations is less investigated. Here, we provide a systematic exposition of the convergence of feasible points in dual decomposition methods under inexact settings, for an important class of global consensus optimization problems. Convergences and the rate of convergences of the algorithms are mathematically substantiated, not only from a dual-domain standpoint but also from a primal-domain standpoint. Analytical results show that the algorithms converge to a neighborhood of optimality, the size of which depends on the level of underlying distortions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2023.3249043</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0295-0515</orcidid><orcidid>https://orcid.org/0000-0001-9810-3478</orcidid><orcidid>https://orcid.org/0000-0002-0623-0208</orcidid><orcidid>https://orcid.org/0000-0001-5991-6548</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2023, Vol.71, p.655-669
issn 1053-587X
1941-0476
1941-0476
language eng
recordid cdi_ieee_primary_10052751
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Convergence
Decomposition
Distortion
Distributed optimization
Domains
Errors
Feasibility
federated learning
inexact coordination
Linear programming
Machine learning
Optimization
Quantization (signal)
Signal processing algorithms
Wireless communication
title On the Primal Feasibility in Dual Decomposition Methods Under Additive and Bounded Errors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Primal%20Feasibility%20in%20Dual%20Decomposition%20Methods%20Under%20Additive%20and%20Bounded%20Errors&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Abeynanda,%20Hansi&rft.date=2023&rft.volume=71&rft.spage=655&rft.epage=669&rft.pages=655-669&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2023.3249043&rft_dat=%3Cproquest_ieee_%3E2792133431%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c325t-361f8eac323d63831991aee60d67b1dc104105967f10792407888e11d13ea99a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2792133431&rft_id=info:pmid/&rft_ieee_id=10052751&rfr_iscdi=true