Loading…
Predictive Maintenance - Exploring strategies for Remaining Useful Life (RUL) prediction
In the current technological context where signals can assist the functionality of the engines in operation and the correct functionality can be monitored. Therefore, patterns of utilization can be identified for predictive and preventive maintenance of such engines, thus predicting the Remaining Us...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 8 |
container_issue | |
container_start_page | 3 |
container_title | |
container_volume | |
creator | Olariu, Eliza Maria Portase, Raluca Tolas, Ramona Potolea, Rodica |
description | In the current technological context where signals can assist the functionality of the engines in operation and the correct functionality can be monitored. Therefore, patterns of utilization can be identified for predictive and preventive maintenance of such engines, thus predicting the Remaining Useful Life (RUL). For this reason, developing strategies to extract knowledge from recorded signals for preventing flaws is necessary and it opens an entire research direction. This paper presents the development of a generic strategy for exploring, analyzing and predicting the value of RUL and identifying techniques for specific data modeling. We defined and experimented a deep learning model, with a LSTM (Long Short-Term Memory) architecture. The identified strategies are tested and validated on a synthetic C-MAPSS data set which contains information from aircraft engines monitored and collected during several operating cycles. We defined 7 hypotheses, tested them and confirmed or unconfirmed each of them. We defined and presented: 6 architectural models, 3 sampling strategies on the original data set, presenting 18 representative experiments. |
doi_str_mv | 10.1109/ICCP56966.2022.10053988 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10053988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10053988</ieee_id><sourcerecordid>10053988</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-ef4aec35e4d1fbf831809bcf3061bdefbb3039168f31ca710ee742eb705058213</originalsourceid><addsrcrecordid>eNo1kE1Lw0AURUdBsNb-A8FZ6iLxvfnKZCmhaiFiKQbclUnypoykSUii6L-3Yl3dxbkcLpexa4QYEdK7VZattUmNiQUIESOAlqm1J-wCjdHKKJmIUzYTiTGRVak-Z4txfAcAKUAh2hl7Ww9Uh2oKn8SfXWgnal1bEY_48qtvuiG0Oz5Og5toF2jkvhv4hvaH4i8oRvIfDc-DJ36zKfJb3h9tXXvJzrxrRlocc86Kh-Vr9hTlL4-r7D6PwmHCFJFXjiqpSdXoS28lWkjLykswWNbky1KCTNFYL7FyCQJRogSVCWjQVqCcs6s_byCibT-EvRu-t_9PyB_v61NY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Predictive Maintenance - Exploring strategies for Remaining Useful Life (RUL) prediction</title><source>IEEE Xplore All Conference Series</source><creator>Olariu, Eliza Maria ; Portase, Raluca ; Tolas, Ramona ; Potolea, Rodica</creator><creatorcontrib>Olariu, Eliza Maria ; Portase, Raluca ; Tolas, Ramona ; Potolea, Rodica</creatorcontrib><description>In the current technological context where signals can assist the functionality of the engines in operation and the correct functionality can be monitored. Therefore, patterns of utilization can be identified for predictive and preventive maintenance of such engines, thus predicting the Remaining Useful Life (RUL). For this reason, developing strategies to extract knowledge from recorded signals for preventing flaws is necessary and it opens an entire research direction. This paper presents the development of a generic strategy for exploring, analyzing and predicting the value of RUL and identifying techniques for specific data modeling. We defined and experimented a deep learning model, with a LSTM (Long Short-Term Memory) architecture. The identified strategies are tested and validated on a synthetic C-MAPSS data set which contains information from aircraft engines monitored and collected during several operating cycles. We defined 7 hypotheses, tested them and confirmed or unconfirmed each of them. We defined and presented: 6 architectural models, 3 sampling strategies on the original data set, presenting 18 representative experiments.</description><identifier>EISSN: 2766-8495</identifier><identifier>EISBN: 1665464372</identifier><identifier>EISBN: 9781665464376</identifier><identifier>DOI: 10.1109/ICCP56966.2022.10053988</identifier><language>eng</language><publisher>IEEE</publisher><subject>C-MAPSS ; data modeling ; LSTM ; predictive maintenance ; RUL prediction</subject><ispartof>2022 IEEE 18th International Conference on Intelligent Computer Communication and Processing (ICCP), 2022, p.3-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10053988$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10053988$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Olariu, Eliza Maria</creatorcontrib><creatorcontrib>Portase, Raluca</creatorcontrib><creatorcontrib>Tolas, Ramona</creatorcontrib><creatorcontrib>Potolea, Rodica</creatorcontrib><title>Predictive Maintenance - Exploring strategies for Remaining Useful Life (RUL) prediction</title><title>2022 IEEE 18th International Conference on Intelligent Computer Communication and Processing (ICCP)</title><addtitle>ICCP</addtitle><description>In the current technological context where signals can assist the functionality of the engines in operation and the correct functionality can be monitored. Therefore, patterns of utilization can be identified for predictive and preventive maintenance of such engines, thus predicting the Remaining Useful Life (RUL). For this reason, developing strategies to extract knowledge from recorded signals for preventing flaws is necessary and it opens an entire research direction. This paper presents the development of a generic strategy for exploring, analyzing and predicting the value of RUL and identifying techniques for specific data modeling. We defined and experimented a deep learning model, with a LSTM (Long Short-Term Memory) architecture. The identified strategies are tested and validated on a synthetic C-MAPSS data set which contains information from aircraft engines monitored and collected during several operating cycles. We defined 7 hypotheses, tested them and confirmed or unconfirmed each of them. We defined and presented: 6 architectural models, 3 sampling strategies on the original data set, presenting 18 representative experiments.</description><subject>C-MAPSS</subject><subject>data modeling</subject><subject>LSTM</subject><subject>predictive maintenance</subject><subject>RUL prediction</subject><issn>2766-8495</issn><isbn>1665464372</isbn><isbn>9781665464376</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kE1Lw0AURUdBsNb-A8FZ6iLxvfnKZCmhaiFiKQbclUnypoykSUii6L-3Yl3dxbkcLpexa4QYEdK7VZattUmNiQUIESOAlqm1J-wCjdHKKJmIUzYTiTGRVak-Z4txfAcAKUAh2hl7Ww9Uh2oKn8SfXWgnal1bEY_48qtvuiG0Oz5Og5toF2jkvhv4hvaH4i8oRvIfDc-DJ36zKfJb3h9tXXvJzrxrRlocc86Kh-Vr9hTlL4-r7D6PwmHCFJFXjiqpSdXoS28lWkjLykswWNbky1KCTNFYL7FyCQJRogSVCWjQVqCcs6s_byCibT-EvRu-t_9PyB_v61NY</recordid><startdate>20220922</startdate><enddate>20220922</enddate><creator>Olariu, Eliza Maria</creator><creator>Portase, Raluca</creator><creator>Tolas, Ramona</creator><creator>Potolea, Rodica</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220922</creationdate><title>Predictive Maintenance - Exploring strategies for Remaining Useful Life (RUL) prediction</title><author>Olariu, Eliza Maria ; Portase, Raluca ; Tolas, Ramona ; Potolea, Rodica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-ef4aec35e4d1fbf831809bcf3061bdefbb3039168f31ca710ee742eb705058213</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>C-MAPSS</topic><topic>data modeling</topic><topic>LSTM</topic><topic>predictive maintenance</topic><topic>RUL prediction</topic><toplevel>online_resources</toplevel><creatorcontrib>Olariu, Eliza Maria</creatorcontrib><creatorcontrib>Portase, Raluca</creatorcontrib><creatorcontrib>Tolas, Ramona</creatorcontrib><creatorcontrib>Potolea, Rodica</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Olariu, Eliza Maria</au><au>Portase, Raluca</au><au>Tolas, Ramona</au><au>Potolea, Rodica</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Predictive Maintenance - Exploring strategies for Remaining Useful Life (RUL) prediction</atitle><btitle>2022 IEEE 18th International Conference on Intelligent Computer Communication and Processing (ICCP)</btitle><stitle>ICCP</stitle><date>2022-09-22</date><risdate>2022</risdate><spage>3</spage><epage>8</epage><pages>3-8</pages><eissn>2766-8495</eissn><eisbn>1665464372</eisbn><eisbn>9781665464376</eisbn><abstract>In the current technological context where signals can assist the functionality of the engines in operation and the correct functionality can be monitored. Therefore, patterns of utilization can be identified for predictive and preventive maintenance of such engines, thus predicting the Remaining Useful Life (RUL). For this reason, developing strategies to extract knowledge from recorded signals for preventing flaws is necessary and it opens an entire research direction. This paper presents the development of a generic strategy for exploring, analyzing and predicting the value of RUL and identifying techniques for specific data modeling. We defined and experimented a deep learning model, with a LSTM (Long Short-Term Memory) architecture. The identified strategies are tested and validated on a synthetic C-MAPSS data set which contains information from aircraft engines monitored and collected during several operating cycles. We defined 7 hypotheses, tested them and confirmed or unconfirmed each of them. We defined and presented: 6 architectural models, 3 sampling strategies on the original data set, presenting 18 representative experiments.</abstract><pub>IEEE</pub><doi>10.1109/ICCP56966.2022.10053988</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2766-8495 |
ispartof | 2022 IEEE 18th International Conference on Intelligent Computer Communication and Processing (ICCP), 2022, p.3-8 |
issn | 2766-8495 |
language | eng |
recordid | cdi_ieee_primary_10053988 |
source | IEEE Xplore All Conference Series |
subjects | C-MAPSS data modeling LSTM predictive maintenance RUL prediction |
title | Predictive Maintenance - Exploring strategies for Remaining Useful Life (RUL) prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A36%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Predictive%20Maintenance%20-%20Exploring%20strategies%20for%20Remaining%20Useful%20Life%20(RUL)%20prediction&rft.btitle=2022%20IEEE%2018th%20International%20Conference%20on%20Intelligent%20Computer%20Communication%20and%20Processing%20(ICCP)&rft.au=Olariu,%20Eliza%20Maria&rft.date=2022-09-22&rft.spage=3&rft.epage=8&rft.pages=3-8&rft.eissn=2766-8495&rft_id=info:doi/10.1109/ICCP56966.2022.10053988&rft.eisbn=1665464372&rft.eisbn_list=9781665464376&rft_dat=%3Cieee_CHZPO%3E10053988%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-ef4aec35e4d1fbf831809bcf3061bdefbb3039168f31ca710ee742eb705058213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10053988&rfr_iscdi=true |