Loading…

Predictive Maintenance - Exploring strategies for Remaining Useful Life (RUL) prediction

In the current technological context where signals can assist the functionality of the engines in operation and the correct functionality can be monitored. Therefore, patterns of utilization can be identified for predictive and preventive maintenance of such engines, thus predicting the Remaining Us...

Full description

Saved in:
Bibliographic Details
Main Authors: Olariu, Eliza Maria, Portase, Raluca, Tolas, Ramona, Potolea, Rodica
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 8
container_issue
container_start_page 3
container_title
container_volume
creator Olariu, Eliza Maria
Portase, Raluca
Tolas, Ramona
Potolea, Rodica
description In the current technological context where signals can assist the functionality of the engines in operation and the correct functionality can be monitored. Therefore, patterns of utilization can be identified for predictive and preventive maintenance of such engines, thus predicting the Remaining Useful Life (RUL). For this reason, developing strategies to extract knowledge from recorded signals for preventing flaws is necessary and it opens an entire research direction. This paper presents the development of a generic strategy for exploring, analyzing and predicting the value of RUL and identifying techniques for specific data modeling. We defined and experimented a deep learning model, with a LSTM (Long Short-Term Memory) architecture. The identified strategies are tested and validated on a synthetic C-MAPSS data set which contains information from aircraft engines monitored and collected during several operating cycles. We defined 7 hypotheses, tested them and confirmed or unconfirmed each of them. We defined and presented: 6 architectural models, 3 sampling strategies on the original data set, presenting 18 representative experiments.
doi_str_mv 10.1109/ICCP56966.2022.10053988
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10053988</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10053988</ieee_id><sourcerecordid>10053988</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-ef4aec35e4d1fbf831809bcf3061bdefbb3039168f31ca710ee742eb705058213</originalsourceid><addsrcrecordid>eNo1kE1Lw0AURUdBsNb-A8FZ6iLxvfnKZCmhaiFiKQbclUnypoykSUii6L-3Yl3dxbkcLpexa4QYEdK7VZattUmNiQUIESOAlqm1J-wCjdHKKJmIUzYTiTGRVak-Z4txfAcAKUAh2hl7Ww9Uh2oKn8SfXWgnal1bEY_48qtvuiG0Oz5Og5toF2jkvhv4hvaH4i8oRvIfDc-DJ36zKfJb3h9tXXvJzrxrRlocc86Kh-Vr9hTlL4-r7D6PwmHCFJFXjiqpSdXoS28lWkjLykswWNbky1KCTNFYL7FyCQJRogSVCWjQVqCcs6s_byCibT-EvRu-t_9PyB_v61NY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Predictive Maintenance - Exploring strategies for Remaining Useful Life (RUL) prediction</title><source>IEEE Xplore All Conference Series</source><creator>Olariu, Eliza Maria ; Portase, Raluca ; Tolas, Ramona ; Potolea, Rodica</creator><creatorcontrib>Olariu, Eliza Maria ; Portase, Raluca ; Tolas, Ramona ; Potolea, Rodica</creatorcontrib><description>In the current technological context where signals can assist the functionality of the engines in operation and the correct functionality can be monitored. Therefore, patterns of utilization can be identified for predictive and preventive maintenance of such engines, thus predicting the Remaining Useful Life (RUL). For this reason, developing strategies to extract knowledge from recorded signals for preventing flaws is necessary and it opens an entire research direction. This paper presents the development of a generic strategy for exploring, analyzing and predicting the value of RUL and identifying techniques for specific data modeling. We defined and experimented a deep learning model, with a LSTM (Long Short-Term Memory) architecture. The identified strategies are tested and validated on a synthetic C-MAPSS data set which contains information from aircraft engines monitored and collected during several operating cycles. We defined 7 hypotheses, tested them and confirmed or unconfirmed each of them. We defined and presented: 6 architectural models, 3 sampling strategies on the original data set, presenting 18 representative experiments.</description><identifier>EISSN: 2766-8495</identifier><identifier>EISBN: 1665464372</identifier><identifier>EISBN: 9781665464376</identifier><identifier>DOI: 10.1109/ICCP56966.2022.10053988</identifier><language>eng</language><publisher>IEEE</publisher><subject>C-MAPSS ; data modeling ; LSTM ; predictive maintenance ; RUL prediction</subject><ispartof>2022 IEEE 18th International Conference on Intelligent Computer Communication and Processing (ICCP), 2022, p.3-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10053988$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10053988$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Olariu, Eliza Maria</creatorcontrib><creatorcontrib>Portase, Raluca</creatorcontrib><creatorcontrib>Tolas, Ramona</creatorcontrib><creatorcontrib>Potolea, Rodica</creatorcontrib><title>Predictive Maintenance - Exploring strategies for Remaining Useful Life (RUL) prediction</title><title>2022 IEEE 18th International Conference on Intelligent Computer Communication and Processing (ICCP)</title><addtitle>ICCP</addtitle><description>In the current technological context where signals can assist the functionality of the engines in operation and the correct functionality can be monitored. Therefore, patterns of utilization can be identified for predictive and preventive maintenance of such engines, thus predicting the Remaining Useful Life (RUL). For this reason, developing strategies to extract knowledge from recorded signals for preventing flaws is necessary and it opens an entire research direction. This paper presents the development of a generic strategy for exploring, analyzing and predicting the value of RUL and identifying techniques for specific data modeling. We defined and experimented a deep learning model, with a LSTM (Long Short-Term Memory) architecture. The identified strategies are tested and validated on a synthetic C-MAPSS data set which contains information from aircraft engines monitored and collected during several operating cycles. We defined 7 hypotheses, tested them and confirmed or unconfirmed each of them. We defined and presented: 6 architectural models, 3 sampling strategies on the original data set, presenting 18 representative experiments.</description><subject>C-MAPSS</subject><subject>data modeling</subject><subject>LSTM</subject><subject>predictive maintenance</subject><subject>RUL prediction</subject><issn>2766-8495</issn><isbn>1665464372</isbn><isbn>9781665464376</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kE1Lw0AURUdBsNb-A8FZ6iLxvfnKZCmhaiFiKQbclUnypoykSUii6L-3Yl3dxbkcLpexa4QYEdK7VZattUmNiQUIESOAlqm1J-wCjdHKKJmIUzYTiTGRVak-Z4txfAcAKUAh2hl7Ww9Uh2oKn8SfXWgnal1bEY_48qtvuiG0Oz5Og5toF2jkvhv4hvaH4i8oRvIfDc-DJ36zKfJb3h9tXXvJzrxrRlocc86Kh-Vr9hTlL4-r7D6PwmHCFJFXjiqpSdXoS28lWkjLykswWNbky1KCTNFYL7FyCQJRogSVCWjQVqCcs6s_byCibT-EvRu-t_9PyB_v61NY</recordid><startdate>20220922</startdate><enddate>20220922</enddate><creator>Olariu, Eliza Maria</creator><creator>Portase, Raluca</creator><creator>Tolas, Ramona</creator><creator>Potolea, Rodica</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20220922</creationdate><title>Predictive Maintenance - Exploring strategies for Remaining Useful Life (RUL) prediction</title><author>Olariu, Eliza Maria ; Portase, Raluca ; Tolas, Ramona ; Potolea, Rodica</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-ef4aec35e4d1fbf831809bcf3061bdefbb3039168f31ca710ee742eb705058213</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>C-MAPSS</topic><topic>data modeling</topic><topic>LSTM</topic><topic>predictive maintenance</topic><topic>RUL prediction</topic><toplevel>online_resources</toplevel><creatorcontrib>Olariu, Eliza Maria</creatorcontrib><creatorcontrib>Portase, Raluca</creatorcontrib><creatorcontrib>Tolas, Ramona</creatorcontrib><creatorcontrib>Potolea, Rodica</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Olariu, Eliza Maria</au><au>Portase, Raluca</au><au>Tolas, Ramona</au><au>Potolea, Rodica</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Predictive Maintenance - Exploring strategies for Remaining Useful Life (RUL) prediction</atitle><btitle>2022 IEEE 18th International Conference on Intelligent Computer Communication and Processing (ICCP)</btitle><stitle>ICCP</stitle><date>2022-09-22</date><risdate>2022</risdate><spage>3</spage><epage>8</epage><pages>3-8</pages><eissn>2766-8495</eissn><eisbn>1665464372</eisbn><eisbn>9781665464376</eisbn><abstract>In the current technological context where signals can assist the functionality of the engines in operation and the correct functionality can be monitored. Therefore, patterns of utilization can be identified for predictive and preventive maintenance of such engines, thus predicting the Remaining Useful Life (RUL). For this reason, developing strategies to extract knowledge from recorded signals for preventing flaws is necessary and it opens an entire research direction. This paper presents the development of a generic strategy for exploring, analyzing and predicting the value of RUL and identifying techniques for specific data modeling. We defined and experimented a deep learning model, with a LSTM (Long Short-Term Memory) architecture. The identified strategies are tested and validated on a synthetic C-MAPSS data set which contains information from aircraft engines monitored and collected during several operating cycles. We defined 7 hypotheses, tested them and confirmed or unconfirmed each of them. We defined and presented: 6 architectural models, 3 sampling strategies on the original data set, presenting 18 representative experiments.</abstract><pub>IEEE</pub><doi>10.1109/ICCP56966.2022.10053988</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2766-8495
ispartof 2022 IEEE 18th International Conference on Intelligent Computer Communication and Processing (ICCP), 2022, p.3-8
issn 2766-8495
language eng
recordid cdi_ieee_primary_10053988
source IEEE Xplore All Conference Series
subjects C-MAPSS
data modeling
LSTM
predictive maintenance
RUL prediction
title Predictive Maintenance - Exploring strategies for Remaining Useful Life (RUL) prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T08%3A36%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Predictive%20Maintenance%20-%20Exploring%20strategies%20for%20Remaining%20Useful%20Life%20(RUL)%20prediction&rft.btitle=2022%20IEEE%2018th%20International%20Conference%20on%20Intelligent%20Computer%20Communication%20and%20Processing%20(ICCP)&rft.au=Olariu,%20Eliza%20Maria&rft.date=2022-09-22&rft.spage=3&rft.epage=8&rft.pages=3-8&rft.eissn=2766-8495&rft_id=info:doi/10.1109/ICCP56966.2022.10053988&rft.eisbn=1665464372&rft.eisbn_list=9781665464376&rft_dat=%3Cieee_CHZPO%3E10053988%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-ef4aec35e4d1fbf831809bcf3061bdefbb3039168f31ca710ee742eb705058213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10053988&rfr_iscdi=true