Loading…
Optimized Energy Management Strategy for Fuel Cell/Battery Hybrid Vehicles to Balance both Fuel Economy and Power Sources Durability
It is of vital importance to realize a reasonable energy management strategy for the stable operation of the fuel cell hybrid electric vehicles (FCHEVs). In order to balance the optimization of the fuel economy and power sources durability of the system, this work designs an optimized Pontryagin...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It is of vital importance to realize a reasonable energy management strategy for the stable operation of the fuel cell hybrid electric vehicles (FCHEVs). In order to balance the optimization of the fuel economy and power sources durability of the system, this work designs an optimized Pontryagin's Minimal Principle (PMP) based EMS. This strategy regards the hydrogen consumption as the optimal objective of the fuel economy. In order to prolong the lifespan of the power sources, the degradation penalty functions of them are introduced into the Hamiltonian function. The proposed method tries to reduce extreme load conditions of the fuel cell and manages the charge-discharge rate, SOC level and the temperature of the battery. Then, the empirical degradation models and fuel consumption models of the system are presented to test the durability and fuel economy of the power sources. The result shows the designed method could reduce power sources degradation and increase fuel economy. |
---|---|
ISSN: | 2688-0938 |
DOI: | 10.1109/CAC57257.2022.10054969 |