Loading…
Computer Vision Aided mmWave UAV Communication Systems
Unmanned aerial vehicle (UAV) communication systems usually operate in harsh scenarios, which require accurate information about the topology and wireless channel to achieve the desired transmission performance. Therefore, when millimeter wave (mmWave) communication with its intrinsic line-of-sight...
Saved in:
Published in: | IEEE internet of things journal 2023-07, Vol.10 (14), p.1-1 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c294t-d3d1b455ce6f125dfb7e4ec2e5df7294174baaf0cd8e493f0a5dc1bcf35c8c1e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c294t-d3d1b455ce6f125dfb7e4ec2e5df7294174baaf0cd8e493f0a5dc1bcf35c8c1e3 |
container_end_page | 1 |
container_issue | 14 |
container_start_page | 1 |
container_title | IEEE internet of things journal |
container_volume | 10 |
creator | Hua, Zizheng Lu, Yang Pan, Gaofeng Gao, Kun da Costa, Daniel Benevides Chen, Su |
description | Unmanned aerial vehicle (UAV) communication systems usually operate in harsh scenarios, which require accurate information about the topology and wireless channel to achieve the desired transmission performance. Therefore, when millimeter wave (mmWave) communication with its intrinsic line-of-sight (LoS) condition is adopted, accurate target localization is essential to determine the spatial relationship between the UAV and the grounded receivers (Rxs). In this paper, a computer-vision (CV)-aided jointly optimization scheme of flight trajectory and power allocation is designed for mmWave UAV communication systems by utilizing the visual information captured via cameras equipped at the UAV. Compared with traditional schemes, the implementation cost and overhead can be greatly saved as no radio frequency transmissions are required in the proposed localization scheme. In addition, the transmit power at the UAV is jointly optimized with its flight trajectory in two different cases. Finally, simulation results are presented to demonstrate the efficiency of the proposed schemes. |
doi_str_mv | 10.1109/JIOT.2023.3251377 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10057403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10057403</ieee_id><sourcerecordid>2834307745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-d3d1b455ce6f125dfb7e4ec2e5df7294174baaf0cd8e493f0a5dc1bcf35c8c1e3</originalsourceid><addsrcrecordid>eNpNkMtqwzAQRUVpoSHNBxS6MHTtVE8rXgbTR0ogiybpUsjSCBTqOJXsQv6-Ms4iq7kw587AQeiR4DkhuHz5XG22c4opmzMqCJPyBk0oozLnRUFvr_I9msV4wBinmiBlMUFF1TanvoOQ7X307TFbegs2a5pv_QfZbrnPEtD0R290N6y_zrGDJj6gO6d_Iswuc4p2b6_b6iNfb95X1XKdG1ryLrfMkpoLYaBwhArragkcDIUUZSKI5LXWDhu7AF4yh7WwhtTGMWEWhgCboufx7im0vz3ETh3aPhzTS0UXjDMsJReJIiNlQhtjAKdOwTc6nBXBajCkBkNqMKQuhlLnaex4ALjisZAcM_YPoL9htg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834307745</pqid></control><display><type>article</type><title>Computer Vision Aided mmWave UAV Communication Systems</title><source>IEEE Xplore (Online service)</source><creator>Hua, Zizheng ; Lu, Yang ; Pan, Gaofeng ; Gao, Kun ; da Costa, Daniel Benevides ; Chen, Su</creator><creatorcontrib>Hua, Zizheng ; Lu, Yang ; Pan, Gaofeng ; Gao, Kun ; da Costa, Daniel Benevides ; Chen, Su</creatorcontrib><description>Unmanned aerial vehicle (UAV) communication systems usually operate in harsh scenarios, which require accurate information about the topology and wireless channel to achieve the desired transmission performance. Therefore, when millimeter wave (mmWave) communication with its intrinsic line-of-sight (LoS) condition is adopted, accurate target localization is essential to determine the spatial relationship between the UAV and the grounded receivers (Rxs). In this paper, a computer-vision (CV)-aided jointly optimization scheme of flight trajectory and power allocation is designed for mmWave UAV communication systems by utilizing the visual information captured via cameras equipped at the UAV. Compared with traditional schemes, the implementation cost and overhead can be greatly saved as no radio frequency transmissions are required in the proposed localization scheme. In addition, the transmit power at the UAV is jointly optimized with its flight trajectory in two different cases. Finally, simulation results are presented to demonstrate the efficiency of the proposed schemes.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3251377</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Autonomous aerial vehicles ; Communication systems ; Communications systems ; Computer vision ; deep learning ; energy efficiency ; Line of sight communication ; Localization ; Location awareness ; Millimeter wave communication ; Millimeter waves ; Object detection ; Optimization ; Simultaneous localization and mapping ; Topology ; Trajectories ; trajectory optimization ; unmanned aerial vehicle communication ; Unmanned aerial vehicles ; Wireless communication</subject><ispartof>IEEE internet of things journal, 2023-07, Vol.10 (14), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-d3d1b455ce6f125dfb7e4ec2e5df7294174baaf0cd8e493f0a5dc1bcf35c8c1e3</citedby><cites>FETCH-LOGICAL-c294t-d3d1b455ce6f125dfb7e4ec2e5df7294174baaf0cd8e493f0a5dc1bcf35c8c1e3</cites><orcidid>0000-0002-3519-4488 ; 0000-0001-6666-8036 ; 0000-0002-3871-3407 ; 0000-0002-3433-4549 ; 0000-0003-1008-5717 ; 0000-0002-5439-7475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10057403$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Hua, Zizheng</creatorcontrib><creatorcontrib>Lu, Yang</creatorcontrib><creatorcontrib>Pan, Gaofeng</creatorcontrib><creatorcontrib>Gao, Kun</creatorcontrib><creatorcontrib>da Costa, Daniel Benevides</creatorcontrib><creatorcontrib>Chen, Su</creatorcontrib><title>Computer Vision Aided mmWave UAV Communication Systems</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Unmanned aerial vehicle (UAV) communication systems usually operate in harsh scenarios, which require accurate information about the topology and wireless channel to achieve the desired transmission performance. Therefore, when millimeter wave (mmWave) communication with its intrinsic line-of-sight (LoS) condition is adopted, accurate target localization is essential to determine the spatial relationship between the UAV and the grounded receivers (Rxs). In this paper, a computer-vision (CV)-aided jointly optimization scheme of flight trajectory and power allocation is designed for mmWave UAV communication systems by utilizing the visual information captured via cameras equipped at the UAV. Compared with traditional schemes, the implementation cost and overhead can be greatly saved as no radio frequency transmissions are required in the proposed localization scheme. In addition, the transmit power at the UAV is jointly optimized with its flight trajectory in two different cases. Finally, simulation results are presented to demonstrate the efficiency of the proposed schemes.</description><subject>Autonomous aerial vehicles</subject><subject>Communication systems</subject><subject>Communications systems</subject><subject>Computer vision</subject><subject>deep learning</subject><subject>energy efficiency</subject><subject>Line of sight communication</subject><subject>Localization</subject><subject>Location awareness</subject><subject>Millimeter wave communication</subject><subject>Millimeter waves</subject><subject>Object detection</subject><subject>Optimization</subject><subject>Simultaneous localization and mapping</subject><subject>Topology</subject><subject>Trajectories</subject><subject>trajectory optimization</subject><subject>unmanned aerial vehicle communication</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless communication</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkMtqwzAQRUVpoSHNBxS6MHTtVE8rXgbTR0ogiybpUsjSCBTqOJXsQv6-Ms4iq7kw587AQeiR4DkhuHz5XG22c4opmzMqCJPyBk0oozLnRUFvr_I9msV4wBinmiBlMUFF1TanvoOQ7X307TFbegs2a5pv_QfZbrnPEtD0R290N6y_zrGDJj6gO6d_Iswuc4p2b6_b6iNfb95X1XKdG1ryLrfMkpoLYaBwhArragkcDIUUZSKI5LXWDhu7AF4yh7WwhtTGMWEWhgCboufx7im0vz3ETh3aPhzTS0UXjDMsJReJIiNlQhtjAKdOwTc6nBXBajCkBkNqMKQuhlLnaex4ALjisZAcM_YPoL9htg</recordid><startdate>20230715</startdate><enddate>20230715</enddate><creator>Hua, Zizheng</creator><creator>Lu, Yang</creator><creator>Pan, Gaofeng</creator><creator>Gao, Kun</creator><creator>da Costa, Daniel Benevides</creator><creator>Chen, Su</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3519-4488</orcidid><orcidid>https://orcid.org/0000-0001-6666-8036</orcidid><orcidid>https://orcid.org/0000-0002-3871-3407</orcidid><orcidid>https://orcid.org/0000-0002-3433-4549</orcidid><orcidid>https://orcid.org/0000-0003-1008-5717</orcidid><orcidid>https://orcid.org/0000-0002-5439-7475</orcidid></search><sort><creationdate>20230715</creationdate><title>Computer Vision Aided mmWave UAV Communication Systems</title><author>Hua, Zizheng ; Lu, Yang ; Pan, Gaofeng ; Gao, Kun ; da Costa, Daniel Benevides ; Chen, Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-d3d1b455ce6f125dfb7e4ec2e5df7294174baaf0cd8e493f0a5dc1bcf35c8c1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Autonomous aerial vehicles</topic><topic>Communication systems</topic><topic>Communications systems</topic><topic>Computer vision</topic><topic>deep learning</topic><topic>energy efficiency</topic><topic>Line of sight communication</topic><topic>Localization</topic><topic>Location awareness</topic><topic>Millimeter wave communication</topic><topic>Millimeter waves</topic><topic>Object detection</topic><topic>Optimization</topic><topic>Simultaneous localization and mapping</topic><topic>Topology</topic><topic>Trajectories</topic><topic>trajectory optimization</topic><topic>unmanned aerial vehicle communication</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Hua, Zizheng</creatorcontrib><creatorcontrib>Lu, Yang</creatorcontrib><creatorcontrib>Pan, Gaofeng</creatorcontrib><creatorcontrib>Gao, Kun</creatorcontrib><creatorcontrib>da Costa, Daniel Benevides</creatorcontrib><creatorcontrib>Chen, Su</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hua, Zizheng</au><au>Lu, Yang</au><au>Pan, Gaofeng</au><au>Gao, Kun</au><au>da Costa, Daniel Benevides</au><au>Chen, Su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer Vision Aided mmWave UAV Communication Systems</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2023-07-15</date><risdate>2023</risdate><volume>10</volume><issue>14</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Unmanned aerial vehicle (UAV) communication systems usually operate in harsh scenarios, which require accurate information about the topology and wireless channel to achieve the desired transmission performance. Therefore, when millimeter wave (mmWave) communication with its intrinsic line-of-sight (LoS) condition is adopted, accurate target localization is essential to determine the spatial relationship between the UAV and the grounded receivers (Rxs). In this paper, a computer-vision (CV)-aided jointly optimization scheme of flight trajectory and power allocation is designed for mmWave UAV communication systems by utilizing the visual information captured via cameras equipped at the UAV. Compared with traditional schemes, the implementation cost and overhead can be greatly saved as no radio frequency transmissions are required in the proposed localization scheme. In addition, the transmit power at the UAV is jointly optimized with its flight trajectory in two different cases. Finally, simulation results are presented to demonstrate the efficiency of the proposed schemes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2023.3251377</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3519-4488</orcidid><orcidid>https://orcid.org/0000-0001-6666-8036</orcidid><orcidid>https://orcid.org/0000-0002-3871-3407</orcidid><orcidid>https://orcid.org/0000-0002-3433-4549</orcidid><orcidid>https://orcid.org/0000-0003-1008-5717</orcidid><orcidid>https://orcid.org/0000-0002-5439-7475</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2023-07, Vol.10 (14), p.1-1 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_ieee_primary_10057403 |
source | IEEE Xplore (Online service) |
subjects | Autonomous aerial vehicles Communication systems Communications systems Computer vision deep learning energy efficiency Line of sight communication Localization Location awareness Millimeter wave communication Millimeter waves Object detection Optimization Simultaneous localization and mapping Topology Trajectories trajectory optimization unmanned aerial vehicle communication Unmanned aerial vehicles Wireless communication |
title | Computer Vision Aided mmWave UAV Communication Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20Vision%20Aided%20mmWave%20UAV%20Communication%20Systems&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Hua,%20Zizheng&rft.date=2023-07-15&rft.volume=10&rft.issue=14&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2023.3251377&rft_dat=%3Cproquest_ieee_%3E2834307745%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-d3d1b455ce6f125dfb7e4ec2e5df7294174baaf0cd8e493f0a5dc1bcf35c8c1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2834307745&rft_id=info:pmid/&rft_ieee_id=10057403&rfr_iscdi=true |