Loading…

Computer Vision Aided mmWave UAV Communication Systems

Unmanned aerial vehicle (UAV) communication systems usually operate in harsh scenarios, which require accurate information about the topology and wireless channel to achieve the desired transmission performance. Therefore, when millimeter wave (mmWave) communication with its intrinsic line-of-sight...

Full description

Saved in:
Bibliographic Details
Published in:IEEE internet of things journal 2023-07, Vol.10 (14), p.1-1
Main Authors: Hua, Zizheng, Lu, Yang, Pan, Gaofeng, Gao, Kun, da Costa, Daniel Benevides, Chen, Su
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-d3d1b455ce6f125dfb7e4ec2e5df7294174baaf0cd8e493f0a5dc1bcf35c8c1e3
cites cdi_FETCH-LOGICAL-c294t-d3d1b455ce6f125dfb7e4ec2e5df7294174baaf0cd8e493f0a5dc1bcf35c8c1e3
container_end_page 1
container_issue 14
container_start_page 1
container_title IEEE internet of things journal
container_volume 10
creator Hua, Zizheng
Lu, Yang
Pan, Gaofeng
Gao, Kun
da Costa, Daniel Benevides
Chen, Su
description Unmanned aerial vehicle (UAV) communication systems usually operate in harsh scenarios, which require accurate information about the topology and wireless channel to achieve the desired transmission performance. Therefore, when millimeter wave (mmWave) communication with its intrinsic line-of-sight (LoS) condition is adopted, accurate target localization is essential to determine the spatial relationship between the UAV and the grounded receivers (Rxs). In this paper, a computer-vision (CV)-aided jointly optimization scheme of flight trajectory and power allocation is designed for mmWave UAV communication systems by utilizing the visual information captured via cameras equipped at the UAV. Compared with traditional schemes, the implementation cost and overhead can be greatly saved as no radio frequency transmissions are required in the proposed localization scheme. In addition, the transmit power at the UAV is jointly optimized with its flight trajectory in two different cases. Finally, simulation results are presented to demonstrate the efficiency of the proposed schemes.
doi_str_mv 10.1109/JIOT.2023.3251377
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_10057403</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10057403</ieee_id><sourcerecordid>2834307745</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-d3d1b455ce6f125dfb7e4ec2e5df7294174baaf0cd8e493f0a5dc1bcf35c8c1e3</originalsourceid><addsrcrecordid>eNpNkMtqwzAQRUVpoSHNBxS6MHTtVE8rXgbTR0ogiybpUsjSCBTqOJXsQv6-Ms4iq7kw587AQeiR4DkhuHz5XG22c4opmzMqCJPyBk0oozLnRUFvr_I9msV4wBinmiBlMUFF1TanvoOQ7X307TFbegs2a5pv_QfZbrnPEtD0R290N6y_zrGDJj6gO6d_Iswuc4p2b6_b6iNfb95X1XKdG1ryLrfMkpoLYaBwhArragkcDIUUZSKI5LXWDhu7AF4yh7WwhtTGMWEWhgCboufx7im0vz3ETh3aPhzTS0UXjDMsJReJIiNlQhtjAKdOwTc6nBXBajCkBkNqMKQuhlLnaex4ALjisZAcM_YPoL9htg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2834307745</pqid></control><display><type>article</type><title>Computer Vision Aided mmWave UAV Communication Systems</title><source>IEEE Xplore (Online service)</source><creator>Hua, Zizheng ; Lu, Yang ; Pan, Gaofeng ; Gao, Kun ; da Costa, Daniel Benevides ; Chen, Su</creator><creatorcontrib>Hua, Zizheng ; Lu, Yang ; Pan, Gaofeng ; Gao, Kun ; da Costa, Daniel Benevides ; Chen, Su</creatorcontrib><description>Unmanned aerial vehicle (UAV) communication systems usually operate in harsh scenarios, which require accurate information about the topology and wireless channel to achieve the desired transmission performance. Therefore, when millimeter wave (mmWave) communication with its intrinsic line-of-sight (LoS) condition is adopted, accurate target localization is essential to determine the spatial relationship between the UAV and the grounded receivers (Rxs). In this paper, a computer-vision (CV)-aided jointly optimization scheme of flight trajectory and power allocation is designed for mmWave UAV communication systems by utilizing the visual information captured via cameras equipped at the UAV. Compared with traditional schemes, the implementation cost and overhead can be greatly saved as no radio frequency transmissions are required in the proposed localization scheme. In addition, the transmit power at the UAV is jointly optimized with its flight trajectory in two different cases. Finally, simulation results are presented to demonstrate the efficiency of the proposed schemes.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3251377</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Autonomous aerial vehicles ; Communication systems ; Communications systems ; Computer vision ; deep learning ; energy efficiency ; Line of sight communication ; Localization ; Location awareness ; Millimeter wave communication ; Millimeter waves ; Object detection ; Optimization ; Simultaneous localization and mapping ; Topology ; Trajectories ; trajectory optimization ; unmanned aerial vehicle communication ; Unmanned aerial vehicles ; Wireless communication</subject><ispartof>IEEE internet of things journal, 2023-07, Vol.10 (14), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-d3d1b455ce6f125dfb7e4ec2e5df7294174baaf0cd8e493f0a5dc1bcf35c8c1e3</citedby><cites>FETCH-LOGICAL-c294t-d3d1b455ce6f125dfb7e4ec2e5df7294174baaf0cd8e493f0a5dc1bcf35c8c1e3</cites><orcidid>0000-0002-3519-4488 ; 0000-0001-6666-8036 ; 0000-0002-3871-3407 ; 0000-0002-3433-4549 ; 0000-0003-1008-5717 ; 0000-0002-5439-7475</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10057403$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Hua, Zizheng</creatorcontrib><creatorcontrib>Lu, Yang</creatorcontrib><creatorcontrib>Pan, Gaofeng</creatorcontrib><creatorcontrib>Gao, Kun</creatorcontrib><creatorcontrib>da Costa, Daniel Benevides</creatorcontrib><creatorcontrib>Chen, Su</creatorcontrib><title>Computer Vision Aided mmWave UAV Communication Systems</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Unmanned aerial vehicle (UAV) communication systems usually operate in harsh scenarios, which require accurate information about the topology and wireless channel to achieve the desired transmission performance. Therefore, when millimeter wave (mmWave) communication with its intrinsic line-of-sight (LoS) condition is adopted, accurate target localization is essential to determine the spatial relationship between the UAV and the grounded receivers (Rxs). In this paper, a computer-vision (CV)-aided jointly optimization scheme of flight trajectory and power allocation is designed for mmWave UAV communication systems by utilizing the visual information captured via cameras equipped at the UAV. Compared with traditional schemes, the implementation cost and overhead can be greatly saved as no radio frequency transmissions are required in the proposed localization scheme. In addition, the transmit power at the UAV is jointly optimized with its flight trajectory in two different cases. Finally, simulation results are presented to demonstrate the efficiency of the proposed schemes.</description><subject>Autonomous aerial vehicles</subject><subject>Communication systems</subject><subject>Communications systems</subject><subject>Computer vision</subject><subject>deep learning</subject><subject>energy efficiency</subject><subject>Line of sight communication</subject><subject>Localization</subject><subject>Location awareness</subject><subject>Millimeter wave communication</subject><subject>Millimeter waves</subject><subject>Object detection</subject><subject>Optimization</subject><subject>Simultaneous localization and mapping</subject><subject>Topology</subject><subject>Trajectories</subject><subject>trajectory optimization</subject><subject>unmanned aerial vehicle communication</subject><subject>Unmanned aerial vehicles</subject><subject>Wireless communication</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpNkMtqwzAQRUVpoSHNBxS6MHTtVE8rXgbTR0ogiybpUsjSCBTqOJXsQv6-Ms4iq7kw587AQeiR4DkhuHz5XG22c4opmzMqCJPyBk0oozLnRUFvr_I9msV4wBinmiBlMUFF1TanvoOQ7X307TFbegs2a5pv_QfZbrnPEtD0R290N6y_zrGDJj6gO6d_Iswuc4p2b6_b6iNfb95X1XKdG1ryLrfMkpoLYaBwhArragkcDIUUZSKI5LXWDhu7AF4yh7WwhtTGMWEWhgCboufx7im0vz3ETh3aPhzTS0UXjDMsJReJIiNlQhtjAKdOwTc6nBXBajCkBkNqMKQuhlLnaex4ALjisZAcM_YPoL9htg</recordid><startdate>20230715</startdate><enddate>20230715</enddate><creator>Hua, Zizheng</creator><creator>Lu, Yang</creator><creator>Pan, Gaofeng</creator><creator>Gao, Kun</creator><creator>da Costa, Daniel Benevides</creator><creator>Chen, Su</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3519-4488</orcidid><orcidid>https://orcid.org/0000-0001-6666-8036</orcidid><orcidid>https://orcid.org/0000-0002-3871-3407</orcidid><orcidid>https://orcid.org/0000-0002-3433-4549</orcidid><orcidid>https://orcid.org/0000-0003-1008-5717</orcidid><orcidid>https://orcid.org/0000-0002-5439-7475</orcidid></search><sort><creationdate>20230715</creationdate><title>Computer Vision Aided mmWave UAV Communication Systems</title><author>Hua, Zizheng ; Lu, Yang ; Pan, Gaofeng ; Gao, Kun ; da Costa, Daniel Benevides ; Chen, Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-d3d1b455ce6f125dfb7e4ec2e5df7294174baaf0cd8e493f0a5dc1bcf35c8c1e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Autonomous aerial vehicles</topic><topic>Communication systems</topic><topic>Communications systems</topic><topic>Computer vision</topic><topic>deep learning</topic><topic>energy efficiency</topic><topic>Line of sight communication</topic><topic>Localization</topic><topic>Location awareness</topic><topic>Millimeter wave communication</topic><topic>Millimeter waves</topic><topic>Object detection</topic><topic>Optimization</topic><topic>Simultaneous localization and mapping</topic><topic>Topology</topic><topic>Trajectories</topic><topic>trajectory optimization</topic><topic>unmanned aerial vehicle communication</topic><topic>Unmanned aerial vehicles</topic><topic>Wireless communication</topic><toplevel>online_resources</toplevel><creatorcontrib>Hua, Zizheng</creatorcontrib><creatorcontrib>Lu, Yang</creatorcontrib><creatorcontrib>Pan, Gaofeng</creatorcontrib><creatorcontrib>Gao, Kun</creatorcontrib><creatorcontrib>da Costa, Daniel Benevides</creatorcontrib><creatorcontrib>Chen, Su</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hua, Zizheng</au><au>Lu, Yang</au><au>Pan, Gaofeng</au><au>Gao, Kun</au><au>da Costa, Daniel Benevides</au><au>Chen, Su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computer Vision Aided mmWave UAV Communication Systems</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2023-07-15</date><risdate>2023</risdate><volume>10</volume><issue>14</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Unmanned aerial vehicle (UAV) communication systems usually operate in harsh scenarios, which require accurate information about the topology and wireless channel to achieve the desired transmission performance. Therefore, when millimeter wave (mmWave) communication with its intrinsic line-of-sight (LoS) condition is adopted, accurate target localization is essential to determine the spatial relationship between the UAV and the grounded receivers (Rxs). In this paper, a computer-vision (CV)-aided jointly optimization scheme of flight trajectory and power allocation is designed for mmWave UAV communication systems by utilizing the visual information captured via cameras equipped at the UAV. Compared with traditional schemes, the implementation cost and overhead can be greatly saved as no radio frequency transmissions are required in the proposed localization scheme. In addition, the transmit power at the UAV is jointly optimized with its flight trajectory in two different cases. Finally, simulation results are presented to demonstrate the efficiency of the proposed schemes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2023.3251377</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-3519-4488</orcidid><orcidid>https://orcid.org/0000-0001-6666-8036</orcidid><orcidid>https://orcid.org/0000-0002-3871-3407</orcidid><orcidid>https://orcid.org/0000-0002-3433-4549</orcidid><orcidid>https://orcid.org/0000-0003-1008-5717</orcidid><orcidid>https://orcid.org/0000-0002-5439-7475</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2023-07, Vol.10 (14), p.1-1
issn 2327-4662
2327-4662
language eng
recordid cdi_ieee_primary_10057403
source IEEE Xplore (Online service)
subjects Autonomous aerial vehicles
Communication systems
Communications systems
Computer vision
deep learning
energy efficiency
Line of sight communication
Localization
Location awareness
Millimeter wave communication
Millimeter waves
Object detection
Optimization
Simultaneous localization and mapping
Topology
Trajectories
trajectory optimization
unmanned aerial vehicle communication
Unmanned aerial vehicles
Wireless communication
title Computer Vision Aided mmWave UAV Communication Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T05%3A06%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computer%20Vision%20Aided%20mmWave%20UAV%20Communication%20Systems&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Hua,%20Zizheng&rft.date=2023-07-15&rft.volume=10&rft.issue=14&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2023.3251377&rft_dat=%3Cproquest_ieee_%3E2834307745%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-d3d1b455ce6f125dfb7e4ec2e5df7294174baaf0cd8e493f0a5dc1bcf35c8c1e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2834307745&rft_id=info:pmid/&rft_ieee_id=10057403&rfr_iscdi=true