Loading…

Exploiting TAS schemes to Enhance the PHY-security in Cooperative NOMA Networks: A Deep Learning Approach

In this paper, we propose a novel antenna selection scheme to enhance the secrecy performance in a relay-aided non-orthogonal multiple access (NOMA) network against an eavesdropper. Different from the conventional antenna selection schemes that does not use channel information, the proposed antenna...

Full description

Saved in:
Bibliographic Details
Main Authors: Pramitarini, Yushintia, Yoga Perdana, Ridho Hendra, Shim, Kyusung, An, Beongku
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 204
container_issue
container_start_page 199
container_title
container_volume
creator Pramitarini, Yushintia
Yoga Perdana, Ridho Hendra
Shim, Kyusung
An, Beongku
description In this paper, we propose a novel antenna selection scheme to enhance the secrecy performance in a relay-aided non-orthogonal multiple access (NOMA) network against an eavesdropper. Different from the conventional antenna selection schemes that does not use channel information, the proposed antenna selection scheme can employ each channel information to maximize the main channel capacity and minimize the eaves-dropper channel capacity, respectively. In order to evaluate the secrecy performance, we propose a deep learning (DL)-based framework that can do real-time configuration since the DL-based framework is based on a compact mapping function. In detail, the proposed min-max relay transmit antenna selection (MMRTAS) scheme can improve the secrecy performance compared to that of the benchmark scheme. Numerical results show that the proposed MMRTAS scheme improves the secrecy performance compared to that of the benchmark scheme. The proposed DL-based framework can estimate the main channel and eavesdropper channel capacities for the near user and far user with an accuracy of 99.79%, respectively.
doi_str_mv 10.1109/ICAIIC57133.2023.10067050
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10067050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10067050</ieee_id><sourcerecordid>10067050</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-55ab7c34e23ef666be0d8ff29377f918e20cfe661947e772ddeed542c5c802ce3</originalsourceid><addsrcrecordid>eNo1kF1PwjAYhauJiQT5B17UHzB8267t6t0yEUgQTMQLr0jp3rkqbEs7P_j3YtTkJOfuyXMOIVcMxoyBuZ4X-XxeSM2EGHPgYswAlAYJJ2RkdMaUkqlUx5ySAc8ES5TJxDkZxfgKAIJDCqkZED_56nat733zQtf5I42uxj1G2rd00tS2cUj7GunD7DmJ6N6D7w_UN7Ro2w6D7f0H0uXqPqdL7D_b8BZvaE5vETu6QBuaH2redaG1rr4gZ5XdRRz99ZA83U3WxSxZrKbHMYvEH536REq71U6kyAVWSqktQplVFTdC68qwDDm4CpViJtWoNS9LxFKm3EmXAXcohuTyl-sRcdMFv7fhsPl_R3wDDxxZ2Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Exploiting TAS schemes to Enhance the PHY-security in Cooperative NOMA Networks: A Deep Learning Approach</title><source>IEEE Xplore All Conference Series</source><creator>Pramitarini, Yushintia ; Yoga Perdana, Ridho Hendra ; Shim, Kyusung ; An, Beongku</creator><creatorcontrib>Pramitarini, Yushintia ; Yoga Perdana, Ridho Hendra ; Shim, Kyusung ; An, Beongku</creatorcontrib><description>In this paper, we propose a novel antenna selection scheme to enhance the secrecy performance in a relay-aided non-orthogonal multiple access (NOMA) network against an eavesdropper. Different from the conventional antenna selection schemes that does not use channel information, the proposed antenna selection scheme can employ each channel information to maximize the main channel capacity and minimize the eaves-dropper channel capacity, respectively. In order to evaluate the secrecy performance, we propose a deep learning (DL)-based framework that can do real-time configuration since the DL-based framework is based on a compact mapping function. In detail, the proposed min-max relay transmit antenna selection (MMRTAS) scheme can improve the secrecy performance compared to that of the benchmark scheme. Numerical results show that the proposed MMRTAS scheme improves the secrecy performance compared to that of the benchmark scheme. The proposed DL-based framework can estimate the main channel and eavesdropper channel capacities for the near user and far user with an accuracy of 99.79%, respectively.</description><identifier>EISSN: 2831-6983</identifier><identifier>EISBN: 9781665456456</identifier><identifier>EISBN: 1665456450</identifier><identifier>DOI: 10.1109/ICAIIC57133.2023.10067050</identifier><language>eng</language><publisher>IEEE</publisher><subject>Benchmark testing ; Channel capacity ; Channel estimation ; Cooperative non-orthogonal multiple access (NOMA) ; Deep learning ; NOMA ; physical layer security ; Receiving antennas ; transmit antenna selection ; Transmitting antennas</subject><ispartof>2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 2023, p.199-204</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10067050$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10067050$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pramitarini, Yushintia</creatorcontrib><creatorcontrib>Yoga Perdana, Ridho Hendra</creatorcontrib><creatorcontrib>Shim, Kyusung</creatorcontrib><creatorcontrib>An, Beongku</creatorcontrib><title>Exploiting TAS schemes to Enhance the PHY-security in Cooperative NOMA Networks: A Deep Learning Approach</title><title>2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)</title><addtitle>ICAIIC</addtitle><description>In this paper, we propose a novel antenna selection scheme to enhance the secrecy performance in a relay-aided non-orthogonal multiple access (NOMA) network against an eavesdropper. Different from the conventional antenna selection schemes that does not use channel information, the proposed antenna selection scheme can employ each channel information to maximize the main channel capacity and minimize the eaves-dropper channel capacity, respectively. In order to evaluate the secrecy performance, we propose a deep learning (DL)-based framework that can do real-time configuration since the DL-based framework is based on a compact mapping function. In detail, the proposed min-max relay transmit antenna selection (MMRTAS) scheme can improve the secrecy performance compared to that of the benchmark scheme. Numerical results show that the proposed MMRTAS scheme improves the secrecy performance compared to that of the benchmark scheme. The proposed DL-based framework can estimate the main channel and eavesdropper channel capacities for the near user and far user with an accuracy of 99.79%, respectively.</description><subject>Benchmark testing</subject><subject>Channel capacity</subject><subject>Channel estimation</subject><subject>Cooperative non-orthogonal multiple access (NOMA)</subject><subject>Deep learning</subject><subject>NOMA</subject><subject>physical layer security</subject><subject>Receiving antennas</subject><subject>transmit antenna selection</subject><subject>Transmitting antennas</subject><issn>2831-6983</issn><isbn>9781665456456</isbn><isbn>1665456450</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kF1PwjAYhauJiQT5B17UHzB8267t6t0yEUgQTMQLr0jp3rkqbEs7P_j3YtTkJOfuyXMOIVcMxoyBuZ4X-XxeSM2EGHPgYswAlAYJJ2RkdMaUkqlUx5ySAc8ES5TJxDkZxfgKAIJDCqkZED_56nat733zQtf5I42uxj1G2rd00tS2cUj7GunD7DmJ6N6D7w_UN7Ro2w6D7f0H0uXqPqdL7D_b8BZvaE5vETu6QBuaH2redaG1rr4gZ5XdRRz99ZA83U3WxSxZrKbHMYvEH536REq71U6kyAVWSqktQplVFTdC68qwDDm4CpViJtWoNS9LxFKm3EmXAXcohuTyl-sRcdMFv7fhsPl_R3wDDxxZ2Q</recordid><startdate>20230220</startdate><enddate>20230220</enddate><creator>Pramitarini, Yushintia</creator><creator>Yoga Perdana, Ridho Hendra</creator><creator>Shim, Kyusung</creator><creator>An, Beongku</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230220</creationdate><title>Exploiting TAS schemes to Enhance the PHY-security in Cooperative NOMA Networks: A Deep Learning Approach</title><author>Pramitarini, Yushintia ; Yoga Perdana, Ridho Hendra ; Shim, Kyusung ; An, Beongku</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-55ab7c34e23ef666be0d8ff29377f918e20cfe661947e772ddeed542c5c802ce3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Benchmark testing</topic><topic>Channel capacity</topic><topic>Channel estimation</topic><topic>Cooperative non-orthogonal multiple access (NOMA)</topic><topic>Deep learning</topic><topic>NOMA</topic><topic>physical layer security</topic><topic>Receiving antennas</topic><topic>transmit antenna selection</topic><topic>Transmitting antennas</topic><toplevel>online_resources</toplevel><creatorcontrib>Pramitarini, Yushintia</creatorcontrib><creatorcontrib>Yoga Perdana, Ridho Hendra</creatorcontrib><creatorcontrib>Shim, Kyusung</creatorcontrib><creatorcontrib>An, Beongku</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pramitarini, Yushintia</au><au>Yoga Perdana, Ridho Hendra</au><au>Shim, Kyusung</au><au>An, Beongku</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Exploiting TAS schemes to Enhance the PHY-security in Cooperative NOMA Networks: A Deep Learning Approach</atitle><btitle>2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)</btitle><stitle>ICAIIC</stitle><date>2023-02-20</date><risdate>2023</risdate><spage>199</spage><epage>204</epage><pages>199-204</pages><eissn>2831-6983</eissn><eisbn>9781665456456</eisbn><eisbn>1665456450</eisbn><abstract>In this paper, we propose a novel antenna selection scheme to enhance the secrecy performance in a relay-aided non-orthogonal multiple access (NOMA) network against an eavesdropper. Different from the conventional antenna selection schemes that does not use channel information, the proposed antenna selection scheme can employ each channel information to maximize the main channel capacity and minimize the eaves-dropper channel capacity, respectively. In order to evaluate the secrecy performance, we propose a deep learning (DL)-based framework that can do real-time configuration since the DL-based framework is based on a compact mapping function. In detail, the proposed min-max relay transmit antenna selection (MMRTAS) scheme can improve the secrecy performance compared to that of the benchmark scheme. Numerical results show that the proposed MMRTAS scheme improves the secrecy performance compared to that of the benchmark scheme. The proposed DL-based framework can estimate the main channel and eavesdropper channel capacities for the near user and far user with an accuracy of 99.79%, respectively.</abstract><pub>IEEE</pub><doi>10.1109/ICAIIC57133.2023.10067050</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2831-6983
ispartof 2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 2023, p.199-204
issn 2831-6983
language eng
recordid cdi_ieee_primary_10067050
source IEEE Xplore All Conference Series
subjects Benchmark testing
Channel capacity
Channel estimation
Cooperative non-orthogonal multiple access (NOMA)
Deep learning
NOMA
physical layer security
Receiving antennas
transmit antenna selection
Transmitting antennas
title Exploiting TAS schemes to Enhance the PHY-security in Cooperative NOMA Networks: A Deep Learning Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T00%3A57%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Exploiting%20TAS%20schemes%20to%20Enhance%20the%20PHY-security%20in%20Cooperative%20NOMA%20Networks:%20A%20Deep%20Learning%20Approach&rft.btitle=2023%20International%20Conference%20on%20Artificial%20Intelligence%20in%20Information%20and%20Communication%20(ICAIIC)&rft.au=Pramitarini,%20Yushintia&rft.date=2023-02-20&rft.spage=199&rft.epage=204&rft.pages=199-204&rft.eissn=2831-6983&rft_id=info:doi/10.1109/ICAIIC57133.2023.10067050&rft.eisbn=9781665456456&rft.eisbn_list=1665456450&rft_dat=%3Cieee_CHZPO%3E10067050%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-55ab7c34e23ef666be0d8ff29377f918e20cfe661947e772ddeed542c5c802ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10067050&rfr_iscdi=true