Loading…

Predicting Indoor PM2.5 Concentration using LSTM-BNN in Edge Device

Many researchers already perform PM2.5 forecasting. However, the majority of research focuses on predicting PM2.5 concentrations in outdoor environments. In contrast, PM2.5 indoor prediction is rarely conducted, despite being more difficult. This study proposes an LSTM-BNN indoor PM2.5 concentration...

Full description

Saved in:
Bibliographic Details
Main Authors: Utama, Ida Bagus Krishna Yoga, Tran, Duc Hoang, Pamungkas, Radityo Fajar, Chung, ByungDeok, Jang, Yeong Min
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 215
container_issue
container_start_page 211
container_title
container_volume
creator Utama, Ida Bagus Krishna Yoga
Tran, Duc Hoang
Pamungkas, Radityo Fajar
Chung, ByungDeok
Jang, Yeong Min
description Many researchers already perform PM2.5 forecasting. However, the majority of research focuses on predicting PM2.5 concentrations in outdoor environments. In contrast, PM2.5 indoor prediction is rarely conducted, despite being more difficult. This study proposes an LSTM-BNN indoor PM2.5 concentration prediction model. The LSTM in the LSTM-BNN model extracts nonlinear correlations from multivariate time series input while the BNN predicts the PM2.5 concentration. Using multivariable input data, the proposed model estimates PM2.5 values 1 hour, 2 hours, and 3 hours in advance. In addition, the proposed model is compared to RNN, LSTM, Single Dense, Multi Dense, and ConvLSTM. MSE, RMSE, MAE, MAPE, and R2 are employed to evaluate the LSTM-BNN model objectively. The LSTM-BNN model beats other models with 1-hour, 2-hour, and 3-hour prediction MAPE and R2 values of 0.001 and 0.999, 0.004 and 0.996, and 0.004 and 0.999, respectively.
doi_str_mv 10.1109/ICAIIC57133.2023.10067057
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10067057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10067057</ieee_id><sourcerecordid>10067057</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-30463542841ee92fb812031a281d0c79371624b49f9835c9a63cc2bfe4fc486c3</originalsourceid><addsrcrecordid>eNo1j91Kw0AUhFdBsNS8gRfrAySe3bO_lxprDaS1YL0uyeakrGgiSRR8eyMqDMzNMPMNY1cCMiHAXxf5TVHk2grETILETAAYC9qesMRbJ4zRSptZp2whHYrUeIfnLBnHFwBACQqUX7B8N1ATwxS7Iy-6pu8HvtvITPO87wJ101BNse_4x_gTKJ_2m_R2u-Wx46vmSPyOPmOgC3bWVq8jJX--ZM_3q33-kJaP6xmzTOO8NqUIyqBW0ilB5GVbOyEBRSWdaCBYj1YYqWrl25lUB18ZDEHWLak2KGcCLtnlb28kosP7EN-q4evw_xu_AQffSg0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Predicting Indoor PM2.5 Concentration using LSTM-BNN in Edge Device</title><source>IEEE Xplore All Conference Series</source><creator>Utama, Ida Bagus Krishna Yoga ; Tran, Duc Hoang ; Pamungkas, Radityo Fajar ; Chung, ByungDeok ; Jang, Yeong Min</creator><creatorcontrib>Utama, Ida Bagus Krishna Yoga ; Tran, Duc Hoang ; Pamungkas, Radityo Fajar ; Chung, ByungDeok ; Jang, Yeong Min</creatorcontrib><description>Many researchers already perform PM2.5 forecasting. However, the majority of research focuses on predicting PM2.5 concentrations in outdoor environments. In contrast, PM2.5 indoor prediction is rarely conducted, despite being more difficult. This study proposes an LSTM-BNN indoor PM2.5 concentration prediction model. The LSTM in the LSTM-BNN model extracts nonlinear correlations from multivariate time series input while the BNN predicts the PM2.5 concentration. Using multivariable input data, the proposed model estimates PM2.5 values 1 hour, 2 hours, and 3 hours in advance. In addition, the proposed model is compared to RNN, LSTM, Single Dense, Multi Dense, and ConvLSTM. MSE, RMSE, MAE, MAPE, and R2 are employed to evaluate the LSTM-BNN model objectively. The LSTM-BNN model beats other models with 1-hour, 2-hour, and 3-hour prediction MAPE and R2 values of 0.001 and 0.999, 0.004 and 0.996, and 0.004 and 0.999, respectively.</description><identifier>EISSN: 2831-6983</identifier><identifier>EISBN: 9781665456456</identifier><identifier>EISBN: 1665456450</identifier><identifier>DOI: 10.1109/ICAIIC57133.2023.10067057</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; bayesian ; Correlation ; Data models ; Forecasting ; IoT ; LSTM ; Measurement ; PM2.5 ; prediction ; Predictive models ; Time series analysis</subject><ispartof>2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 2023, p.211-215</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10067057$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10067057$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Utama, Ida Bagus Krishna Yoga</creatorcontrib><creatorcontrib>Tran, Duc Hoang</creatorcontrib><creatorcontrib>Pamungkas, Radityo Fajar</creatorcontrib><creatorcontrib>Chung, ByungDeok</creatorcontrib><creatorcontrib>Jang, Yeong Min</creatorcontrib><title>Predicting Indoor PM2.5 Concentration using LSTM-BNN in Edge Device</title><title>2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)</title><addtitle>ICAIIC</addtitle><description>Many researchers already perform PM2.5 forecasting. However, the majority of research focuses on predicting PM2.5 concentrations in outdoor environments. In contrast, PM2.5 indoor prediction is rarely conducted, despite being more difficult. This study proposes an LSTM-BNN indoor PM2.5 concentration prediction model. The LSTM in the LSTM-BNN model extracts nonlinear correlations from multivariate time series input while the BNN predicts the PM2.5 concentration. Using multivariable input data, the proposed model estimates PM2.5 values 1 hour, 2 hours, and 3 hours in advance. In addition, the proposed model is compared to RNN, LSTM, Single Dense, Multi Dense, and ConvLSTM. MSE, RMSE, MAE, MAPE, and R2 are employed to evaluate the LSTM-BNN model objectively. The LSTM-BNN model beats other models with 1-hour, 2-hour, and 3-hour prediction MAPE and R2 values of 0.001 and 0.999, 0.004 and 0.996, and 0.004 and 0.999, respectively.</description><subject>Artificial intelligence</subject><subject>bayesian</subject><subject>Correlation</subject><subject>Data models</subject><subject>Forecasting</subject><subject>IoT</subject><subject>LSTM</subject><subject>Measurement</subject><subject>PM2.5</subject><subject>prediction</subject><subject>Predictive models</subject><subject>Time series analysis</subject><issn>2831-6983</issn><isbn>9781665456456</isbn><isbn>1665456450</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j91Kw0AUhFdBsNS8gRfrAySe3bO_lxprDaS1YL0uyeakrGgiSRR8eyMqDMzNMPMNY1cCMiHAXxf5TVHk2grETILETAAYC9qesMRbJ4zRSptZp2whHYrUeIfnLBnHFwBACQqUX7B8N1ATwxS7Iy-6pu8HvtvITPO87wJ101BNse_4x_gTKJ_2m_R2u-Wx46vmSPyOPmOgC3bWVq8jJX--ZM_3q33-kJaP6xmzTOO8NqUIyqBW0ilB5GVbOyEBRSWdaCBYj1YYqWrl25lUB18ZDEHWLak2KGcCLtnlb28kosP7EN-q4evw_xu_AQffSg0</recordid><startdate>20230220</startdate><enddate>20230220</enddate><creator>Utama, Ida Bagus Krishna Yoga</creator><creator>Tran, Duc Hoang</creator><creator>Pamungkas, Radityo Fajar</creator><creator>Chung, ByungDeok</creator><creator>Jang, Yeong Min</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230220</creationdate><title>Predicting Indoor PM2.5 Concentration using LSTM-BNN in Edge Device</title><author>Utama, Ida Bagus Krishna Yoga ; Tran, Duc Hoang ; Pamungkas, Radityo Fajar ; Chung, ByungDeok ; Jang, Yeong Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-30463542841ee92fb812031a281d0c79371624b49f9835c9a63cc2bfe4fc486c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>bayesian</topic><topic>Correlation</topic><topic>Data models</topic><topic>Forecasting</topic><topic>IoT</topic><topic>LSTM</topic><topic>Measurement</topic><topic>PM2.5</topic><topic>prediction</topic><topic>Predictive models</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Utama, Ida Bagus Krishna Yoga</creatorcontrib><creatorcontrib>Tran, Duc Hoang</creatorcontrib><creatorcontrib>Pamungkas, Radityo Fajar</creatorcontrib><creatorcontrib>Chung, ByungDeok</creatorcontrib><creatorcontrib>Jang, Yeong Min</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Utama, Ida Bagus Krishna Yoga</au><au>Tran, Duc Hoang</au><au>Pamungkas, Radityo Fajar</au><au>Chung, ByungDeok</au><au>Jang, Yeong Min</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Predicting Indoor PM2.5 Concentration using LSTM-BNN in Edge Device</atitle><btitle>2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)</btitle><stitle>ICAIIC</stitle><date>2023-02-20</date><risdate>2023</risdate><spage>211</spage><epage>215</epage><pages>211-215</pages><eissn>2831-6983</eissn><eisbn>9781665456456</eisbn><eisbn>1665456450</eisbn><abstract>Many researchers already perform PM2.5 forecasting. However, the majority of research focuses on predicting PM2.5 concentrations in outdoor environments. In contrast, PM2.5 indoor prediction is rarely conducted, despite being more difficult. This study proposes an LSTM-BNN indoor PM2.5 concentration prediction model. The LSTM in the LSTM-BNN model extracts nonlinear correlations from multivariate time series input while the BNN predicts the PM2.5 concentration. Using multivariable input data, the proposed model estimates PM2.5 values 1 hour, 2 hours, and 3 hours in advance. In addition, the proposed model is compared to RNN, LSTM, Single Dense, Multi Dense, and ConvLSTM. MSE, RMSE, MAE, MAPE, and R2 are employed to evaluate the LSTM-BNN model objectively. The LSTM-BNN model beats other models with 1-hour, 2-hour, and 3-hour prediction MAPE and R2 values of 0.001 and 0.999, 0.004 and 0.996, and 0.004 and 0.999, respectively.</abstract><pub>IEEE</pub><doi>10.1109/ICAIIC57133.2023.10067057</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2831-6983
ispartof 2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 2023, p.211-215
issn 2831-6983
language eng
recordid cdi_ieee_primary_10067057
source IEEE Xplore All Conference Series
subjects Artificial intelligence
bayesian
Correlation
Data models
Forecasting
IoT
LSTM
Measurement
PM2.5
prediction
Predictive models
Time series analysis
title Predicting Indoor PM2.5 Concentration using LSTM-BNN in Edge Device
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Predicting%20Indoor%20PM2.5%20Concentration%20using%20LSTM-BNN%20in%20Edge%20Device&rft.btitle=2023%20International%20Conference%20on%20Artificial%20Intelligence%20in%20Information%20and%20Communication%20(ICAIIC)&rft.au=Utama,%20Ida%20Bagus%20Krishna%20Yoga&rft.date=2023-02-20&rft.spage=211&rft.epage=215&rft.pages=211-215&rft.eissn=2831-6983&rft_id=info:doi/10.1109/ICAIIC57133.2023.10067057&rft.eisbn=9781665456456&rft.eisbn_list=1665456450&rft_dat=%3Cieee_CHZPO%3E10067057%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-30463542841ee92fb812031a281d0c79371624b49f9835c9a63cc2bfe4fc486c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10067057&rfr_iscdi=true