Loading…
Predicting Indoor PM2.5 Concentration using LSTM-BNN in Edge Device
Many researchers already perform PM2.5 forecasting. However, the majority of research focuses on predicting PM2.5 concentrations in outdoor environments. In contrast, PM2.5 indoor prediction is rarely conducted, despite being more difficult. This study proposes an LSTM-BNN indoor PM2.5 concentration...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 215 |
container_issue | |
container_start_page | 211 |
container_title | |
container_volume | |
creator | Utama, Ida Bagus Krishna Yoga Tran, Duc Hoang Pamungkas, Radityo Fajar Chung, ByungDeok Jang, Yeong Min |
description | Many researchers already perform PM2.5 forecasting. However, the majority of research focuses on predicting PM2.5 concentrations in outdoor environments. In contrast, PM2.5 indoor prediction is rarely conducted, despite being more difficult. This study proposes an LSTM-BNN indoor PM2.5 concentration prediction model. The LSTM in the LSTM-BNN model extracts nonlinear correlations from multivariate time series input while the BNN predicts the PM2.5 concentration. Using multivariable input data, the proposed model estimates PM2.5 values 1 hour, 2 hours, and 3 hours in advance. In addition, the proposed model is compared to RNN, LSTM, Single Dense, Multi Dense, and ConvLSTM. MSE, RMSE, MAE, MAPE, and R2 are employed to evaluate the LSTM-BNN model objectively. The LSTM-BNN model beats other models with 1-hour, 2-hour, and 3-hour prediction MAPE and R2 values of 0.001 and 0.999, 0.004 and 0.996, and 0.004 and 0.999, respectively. |
doi_str_mv | 10.1109/ICAIIC57133.2023.10067057 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10067057</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10067057</ieee_id><sourcerecordid>10067057</sourcerecordid><originalsourceid>FETCH-LOGICAL-i204t-30463542841ee92fb812031a281d0c79371624b49f9835c9a63cc2bfe4fc486c3</originalsourceid><addsrcrecordid>eNo1j91Kw0AUhFdBsNS8gRfrAySe3bO_lxprDaS1YL0uyeakrGgiSRR8eyMqDMzNMPMNY1cCMiHAXxf5TVHk2grETILETAAYC9qesMRbJ4zRSptZp2whHYrUeIfnLBnHFwBACQqUX7B8N1ATwxS7Iy-6pu8HvtvITPO87wJ101BNse_4x_gTKJ_2m_R2u-Wx46vmSPyOPmOgC3bWVq8jJX--ZM_3q33-kJaP6xmzTOO8NqUIyqBW0ilB5GVbOyEBRSWdaCBYj1YYqWrl25lUB18ZDEHWLak2KGcCLtnlb28kosP7EN-q4evw_xu_AQffSg0</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Predicting Indoor PM2.5 Concentration using LSTM-BNN in Edge Device</title><source>IEEE Xplore All Conference Series</source><creator>Utama, Ida Bagus Krishna Yoga ; Tran, Duc Hoang ; Pamungkas, Radityo Fajar ; Chung, ByungDeok ; Jang, Yeong Min</creator><creatorcontrib>Utama, Ida Bagus Krishna Yoga ; Tran, Duc Hoang ; Pamungkas, Radityo Fajar ; Chung, ByungDeok ; Jang, Yeong Min</creatorcontrib><description>Many researchers already perform PM2.5 forecasting. However, the majority of research focuses on predicting PM2.5 concentrations in outdoor environments. In contrast, PM2.5 indoor prediction is rarely conducted, despite being more difficult. This study proposes an LSTM-BNN indoor PM2.5 concentration prediction model. The LSTM in the LSTM-BNN model extracts nonlinear correlations from multivariate time series input while the BNN predicts the PM2.5 concentration. Using multivariable input data, the proposed model estimates PM2.5 values 1 hour, 2 hours, and 3 hours in advance. In addition, the proposed model is compared to RNN, LSTM, Single Dense, Multi Dense, and ConvLSTM. MSE, RMSE, MAE, MAPE, and R2 are employed to evaluate the LSTM-BNN model objectively. The LSTM-BNN model beats other models with 1-hour, 2-hour, and 3-hour prediction MAPE and R2 values of 0.001 and 0.999, 0.004 and 0.996, and 0.004 and 0.999, respectively.</description><identifier>EISSN: 2831-6983</identifier><identifier>EISBN: 9781665456456</identifier><identifier>EISBN: 1665456450</identifier><identifier>DOI: 10.1109/ICAIIC57133.2023.10067057</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; bayesian ; Correlation ; Data models ; Forecasting ; IoT ; LSTM ; Measurement ; PM2.5 ; prediction ; Predictive models ; Time series analysis</subject><ispartof>2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 2023, p.211-215</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10067057$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,27906,54536,54913</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10067057$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Utama, Ida Bagus Krishna Yoga</creatorcontrib><creatorcontrib>Tran, Duc Hoang</creatorcontrib><creatorcontrib>Pamungkas, Radityo Fajar</creatorcontrib><creatorcontrib>Chung, ByungDeok</creatorcontrib><creatorcontrib>Jang, Yeong Min</creatorcontrib><title>Predicting Indoor PM2.5 Concentration using LSTM-BNN in Edge Device</title><title>2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)</title><addtitle>ICAIIC</addtitle><description>Many researchers already perform PM2.5 forecasting. However, the majority of research focuses on predicting PM2.5 concentrations in outdoor environments. In contrast, PM2.5 indoor prediction is rarely conducted, despite being more difficult. This study proposes an LSTM-BNN indoor PM2.5 concentration prediction model. The LSTM in the LSTM-BNN model extracts nonlinear correlations from multivariate time series input while the BNN predicts the PM2.5 concentration. Using multivariable input data, the proposed model estimates PM2.5 values 1 hour, 2 hours, and 3 hours in advance. In addition, the proposed model is compared to RNN, LSTM, Single Dense, Multi Dense, and ConvLSTM. MSE, RMSE, MAE, MAPE, and R2 are employed to evaluate the LSTM-BNN model objectively. The LSTM-BNN model beats other models with 1-hour, 2-hour, and 3-hour prediction MAPE and R2 values of 0.001 and 0.999, 0.004 and 0.996, and 0.004 and 0.999, respectively.</description><subject>Artificial intelligence</subject><subject>bayesian</subject><subject>Correlation</subject><subject>Data models</subject><subject>Forecasting</subject><subject>IoT</subject><subject>LSTM</subject><subject>Measurement</subject><subject>PM2.5</subject><subject>prediction</subject><subject>Predictive models</subject><subject>Time series analysis</subject><issn>2831-6983</issn><isbn>9781665456456</isbn><isbn>1665456450</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1j91Kw0AUhFdBsNS8gRfrAySe3bO_lxprDaS1YL0uyeakrGgiSRR8eyMqDMzNMPMNY1cCMiHAXxf5TVHk2grETILETAAYC9qesMRbJ4zRSptZp2whHYrUeIfnLBnHFwBACQqUX7B8N1ATwxS7Iy-6pu8HvtvITPO87wJ101BNse_4x_gTKJ_2m_R2u-Wx46vmSPyOPmOgC3bWVq8jJX--ZM_3q33-kJaP6xmzTOO8NqUIyqBW0ilB5GVbOyEBRSWdaCBYj1YYqWrl25lUB18ZDEHWLak2KGcCLtnlb28kosP7EN-q4evw_xu_AQffSg0</recordid><startdate>20230220</startdate><enddate>20230220</enddate><creator>Utama, Ida Bagus Krishna Yoga</creator><creator>Tran, Duc Hoang</creator><creator>Pamungkas, Radityo Fajar</creator><creator>Chung, ByungDeok</creator><creator>Jang, Yeong Min</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20230220</creationdate><title>Predicting Indoor PM2.5 Concentration using LSTM-BNN in Edge Device</title><author>Utama, Ida Bagus Krishna Yoga ; Tran, Duc Hoang ; Pamungkas, Radityo Fajar ; Chung, ByungDeok ; Jang, Yeong Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i204t-30463542841ee92fb812031a281d0c79371624b49f9835c9a63cc2bfe4fc486c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>bayesian</topic><topic>Correlation</topic><topic>Data models</topic><topic>Forecasting</topic><topic>IoT</topic><topic>LSTM</topic><topic>Measurement</topic><topic>PM2.5</topic><topic>prediction</topic><topic>Predictive models</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Utama, Ida Bagus Krishna Yoga</creatorcontrib><creatorcontrib>Tran, Duc Hoang</creatorcontrib><creatorcontrib>Pamungkas, Radityo Fajar</creatorcontrib><creatorcontrib>Chung, ByungDeok</creatorcontrib><creatorcontrib>Jang, Yeong Min</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Utama, Ida Bagus Krishna Yoga</au><au>Tran, Duc Hoang</au><au>Pamungkas, Radityo Fajar</au><au>Chung, ByungDeok</au><au>Jang, Yeong Min</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Predicting Indoor PM2.5 Concentration using LSTM-BNN in Edge Device</atitle><btitle>2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)</btitle><stitle>ICAIIC</stitle><date>2023-02-20</date><risdate>2023</risdate><spage>211</spage><epage>215</epage><pages>211-215</pages><eissn>2831-6983</eissn><eisbn>9781665456456</eisbn><eisbn>1665456450</eisbn><abstract>Many researchers already perform PM2.5 forecasting. However, the majority of research focuses on predicting PM2.5 concentrations in outdoor environments. In contrast, PM2.5 indoor prediction is rarely conducted, despite being more difficult. This study proposes an LSTM-BNN indoor PM2.5 concentration prediction model. The LSTM in the LSTM-BNN model extracts nonlinear correlations from multivariate time series input while the BNN predicts the PM2.5 concentration. Using multivariable input data, the proposed model estimates PM2.5 values 1 hour, 2 hours, and 3 hours in advance. In addition, the proposed model is compared to RNN, LSTM, Single Dense, Multi Dense, and ConvLSTM. MSE, RMSE, MAE, MAPE, and R2 are employed to evaluate the LSTM-BNN model objectively. The LSTM-BNN model beats other models with 1-hour, 2-hour, and 3-hour prediction MAPE and R2 values of 0.001 and 0.999, 0.004 and 0.996, and 0.004 and 0.999, respectively.</abstract><pub>IEEE</pub><doi>10.1109/ICAIIC57133.2023.10067057</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2831-6983 |
ispartof | 2023 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 2023, p.211-215 |
issn | 2831-6983 |
language | eng |
recordid | cdi_ieee_primary_10067057 |
source | IEEE Xplore All Conference Series |
subjects | Artificial intelligence bayesian Correlation Data models Forecasting IoT LSTM Measurement PM2.5 prediction Predictive models Time series analysis |
title | Predicting Indoor PM2.5 Concentration using LSTM-BNN in Edge Device |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A22%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Predicting%20Indoor%20PM2.5%20Concentration%20using%20LSTM-BNN%20in%20Edge%20Device&rft.btitle=2023%20International%20Conference%20on%20Artificial%20Intelligence%20in%20Information%20and%20Communication%20(ICAIIC)&rft.au=Utama,%20Ida%20Bagus%20Krishna%20Yoga&rft.date=2023-02-20&rft.spage=211&rft.epage=215&rft.pages=211-215&rft.eissn=2831-6983&rft_id=info:doi/10.1109/ICAIIC57133.2023.10067057&rft.eisbn=9781665456456&rft.eisbn_list=1665456450&rft_dat=%3Cieee_CHZPO%3E10067057%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i204t-30463542841ee92fb812031a281d0c79371624b49f9835c9a63cc2bfe4fc486c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10067057&rfr_iscdi=true |