Loading…

Arrhythmia Detection Based on Semantic Segmentation for Multi-lead ECG

In order to detect multi-class arrhythmias with high accuracy using multi-lead electrocardiogram (ECG) signals, we propose an arrhythmia classification method based on semantic segmentation. In our framework, ECG signals are firstly filtered and normalized, and divided into 30-second segments. Then,...

Full description

Saved in:
Bibliographic Details
Main Authors: Xie, Hanshuang, Zheng, Mengna, Zhu, Huaiyu, Wu, Fan, Pan, Yun
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume 498
creator Xie, Hanshuang
Zheng, Mengna
Zhu, Huaiyu
Wu, Fan
Pan, Yun
description In order to detect multi-class arrhythmias with high accuracy using multi-lead electrocardiogram (ECG) signals, we propose an arrhythmia classification method based on semantic segmentation. In our framework, ECG signals are firstly filtered and normalized, and divided into 30-second segments. Then, a convolutional neural network (CNN) with different dilation rates is designed to extract and integrate the multi-scale features of ECG signals. Particularly, we apply squeeze-and-excitation blocks to assign weights to features, and heartbeats are finally classified by Softmax function. Aiming at the problem of class-imbalance, the method of overlap between segments is futher adopted to increase the samples, and probability threshold values are set. We evaluate the performance of the proposed method on five public databases. The precision, sensitivity and F 1 score for fusion of ventricular contraction and normal beat (F), supraventricular escape beat (AE) and ventricular escape beat (VE) are all over than 90%. The proposed method combines CNN and semantic segmentation could be helpful for automated ECG diagnosis in clinical practice.
doi_str_mv 10.22489/CinC.2022.173
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10081917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10081917</ieee_id><sourcerecordid>10081917</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-6e30b2acf8b9c0c4f730ceefa9df2f4479a138296840806087ae3f0f09279983</originalsourceid><addsrcrecordid>eNotjzFPwzAUhA0SElXJysSQP5DybCex31hCW5CKGOjAVr06z9QoSVFihv57LOCW-6STTndC3EpYKFVavG_C0CwUKLWQRl-IDA1aXYEGQAOXYqa0qgprzfu1yKbpE5IqY7G2M7FejuPxHI99oPyRI7sYTkP-QBO3eYI37mmIwSX46HmI9Bv705i_fHcxFB1Tm6-azY248tRNnP37XOzWq13zVGxfN8_NclsEKTEWNWs4KHLeHtCBK73R4Jg9YeuVL0uDJLVVaVkJFmqwhlh78IDKYPo0F3d_tYGZ919j6Gk87yWAlZiu_wD1W0sL</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Arrhythmia Detection Based on Semantic Segmentation for Multi-lead ECG</title><source>IEEE Xplore All Conference Series</source><creator>Xie, Hanshuang ; Zheng, Mengna ; Zhu, Huaiyu ; Wu, Fan ; Pan, Yun</creator><creatorcontrib>Xie, Hanshuang ; Zheng, Mengna ; Zhu, Huaiyu ; Wu, Fan ; Pan, Yun</creatorcontrib><description>In order to detect multi-class arrhythmias with high accuracy using multi-lead electrocardiogram (ECG) signals, we propose an arrhythmia classification method based on semantic segmentation. In our framework, ECG signals are firstly filtered and normalized, and divided into 30-second segments. Then, a convolutional neural network (CNN) with different dilation rates is designed to extract and integrate the multi-scale features of ECG signals. Particularly, we apply squeeze-and-excitation blocks to assign weights to features, and heartbeats are finally classified by Softmax function. Aiming at the problem of class-imbalance, the method of overlap between segments is futher adopted to increase the samples, and probability threshold values are set. We evaluate the performance of the proposed method on five public databases. The precision, sensitivity and F 1 score for fusion of ventricular contraction and normal beat (F), supraventricular escape beat (AE) and ventricular escape beat (VE) are all over than 90%. The proposed method combines CNN and semantic segmentation could be helpful for automated ECG diagnosis in clinical practice.</description><identifier>EISSN: 2325-887X</identifier><identifier>EISBN: 9798350300970</identifier><identifier>DOI: 10.22489/CinC.2022.173</identifier><language>eng</language><publisher>Creative Commons</publisher><subject>Arrhythmia ; Electrocardiography ; Heart beat ; Semantic segmentation ; Sensitivity ; Training</subject><ispartof>2022 Computing in Cardiology (CinC), 2022, Vol.498, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10081917$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10081917$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xie, Hanshuang</creatorcontrib><creatorcontrib>Zheng, Mengna</creatorcontrib><creatorcontrib>Zhu, Huaiyu</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Pan, Yun</creatorcontrib><title>Arrhythmia Detection Based on Semantic Segmentation for Multi-lead ECG</title><title>2022 Computing in Cardiology (CinC)</title><addtitle>CINC</addtitle><description>In order to detect multi-class arrhythmias with high accuracy using multi-lead electrocardiogram (ECG) signals, we propose an arrhythmia classification method based on semantic segmentation. In our framework, ECG signals are firstly filtered and normalized, and divided into 30-second segments. Then, a convolutional neural network (CNN) with different dilation rates is designed to extract and integrate the multi-scale features of ECG signals. Particularly, we apply squeeze-and-excitation blocks to assign weights to features, and heartbeats are finally classified by Softmax function. Aiming at the problem of class-imbalance, the method of overlap between segments is futher adopted to increase the samples, and probability threshold values are set. We evaluate the performance of the proposed method on five public databases. The precision, sensitivity and F 1 score for fusion of ventricular contraction and normal beat (F), supraventricular escape beat (AE) and ventricular escape beat (VE) are all over than 90%. The proposed method combines CNN and semantic segmentation could be helpful for automated ECG diagnosis in clinical practice.</description><subject>Arrhythmia</subject><subject>Electrocardiography</subject><subject>Heart beat</subject><subject>Semantic segmentation</subject><subject>Sensitivity</subject><subject>Training</subject><issn>2325-887X</issn><isbn>9798350300970</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjzFPwzAUhA0SElXJysSQP5DybCex31hCW5CKGOjAVr06z9QoSVFihv57LOCW-6STTndC3EpYKFVavG_C0CwUKLWQRl-IDA1aXYEGQAOXYqa0qgprzfu1yKbpE5IqY7G2M7FejuPxHI99oPyRI7sYTkP-QBO3eYI37mmIwSX46HmI9Bv705i_fHcxFB1Tm6-azY248tRNnP37XOzWq13zVGxfN8_NclsEKTEWNWs4KHLeHtCBK73R4Jg9YeuVL0uDJLVVaVkJFmqwhlh78IDKYPo0F3d_tYGZ919j6Gk87yWAlZiu_wD1W0sL</recordid><startdate>20220904</startdate><enddate>20220904</enddate><creator>Xie, Hanshuang</creator><creator>Zheng, Mengna</creator><creator>Zhu, Huaiyu</creator><creator>Wu, Fan</creator><creator>Pan, Yun</creator><general>Creative Commons</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220904</creationdate><title>Arrhythmia Detection Based on Semantic Segmentation for Multi-lead ECG</title><author>Xie, Hanshuang ; Zheng, Mengna ; Zhu, Huaiyu ; Wu, Fan ; Pan, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-6e30b2acf8b9c0c4f730ceefa9df2f4479a138296840806087ae3f0f09279983</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arrhythmia</topic><topic>Electrocardiography</topic><topic>Heart beat</topic><topic>Semantic segmentation</topic><topic>Sensitivity</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Xie, Hanshuang</creatorcontrib><creatorcontrib>Zheng, Mengna</creatorcontrib><creatorcontrib>Zhu, Huaiyu</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Pan, Yun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xie, Hanshuang</au><au>Zheng, Mengna</au><au>Zhu, Huaiyu</au><au>Wu, Fan</au><au>Pan, Yun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Arrhythmia Detection Based on Semantic Segmentation for Multi-lead ECG</atitle><btitle>2022 Computing in Cardiology (CinC)</btitle><stitle>CINC</stitle><date>2022-09-04</date><risdate>2022</risdate><volume>498</volume><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2325-887X</eissn><eisbn>9798350300970</eisbn><abstract>In order to detect multi-class arrhythmias with high accuracy using multi-lead electrocardiogram (ECG) signals, we propose an arrhythmia classification method based on semantic segmentation. In our framework, ECG signals are firstly filtered and normalized, and divided into 30-second segments. Then, a convolutional neural network (CNN) with different dilation rates is designed to extract and integrate the multi-scale features of ECG signals. Particularly, we apply squeeze-and-excitation blocks to assign weights to features, and heartbeats are finally classified by Softmax function. Aiming at the problem of class-imbalance, the method of overlap between segments is futher adopted to increase the samples, and probability threshold values are set. We evaluate the performance of the proposed method on five public databases. The precision, sensitivity and F 1 score for fusion of ventricular contraction and normal beat (F), supraventricular escape beat (AE) and ventricular escape beat (VE) are all over than 90%. The proposed method combines CNN and semantic segmentation could be helpful for automated ECG diagnosis in clinical practice.</abstract><pub>Creative Commons</pub><doi>10.22489/CinC.2022.173</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2325-887X
ispartof 2022 Computing in Cardiology (CinC), 2022, Vol.498, p.1-4
issn 2325-887X
language eng
recordid cdi_ieee_primary_10081917
source IEEE Xplore All Conference Series
subjects Arrhythmia
Electrocardiography
Heart beat
Semantic segmentation
Sensitivity
Training
title Arrhythmia Detection Based on Semantic Segmentation for Multi-lead ECG
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A29%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Arrhythmia%20Detection%20Based%20on%20Semantic%20Segmentation%20for%20Multi-lead%20ECG&rft.btitle=2022%20Computing%20in%20Cardiology%20(CinC)&rft.au=Xie,%20Hanshuang&rft.date=2022-09-04&rft.volume=498&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2325-887X&rft_id=info:doi/10.22489/CinC.2022.173&rft.eisbn=9798350300970&rft_dat=%3Cieee_CHZPO%3E10081917%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-6e30b2acf8b9c0c4f730ceefa9df2f4479a138296840806087ae3f0f09279983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10081917&rfr_iscdi=true