Loading…
Arrhythmia Detection Based on Semantic Segmentation for Multi-lead ECG
In order to detect multi-class arrhythmias with high accuracy using multi-lead electrocardiogram (ECG) signals, we propose an arrhythmia classification method based on semantic segmentation. In our framework, ECG signals are firstly filtered and normalized, and divided into 30-second segments. Then,...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | 498 |
creator | Xie, Hanshuang Zheng, Mengna Zhu, Huaiyu Wu, Fan Pan, Yun |
description | In order to detect multi-class arrhythmias with high accuracy using multi-lead electrocardiogram (ECG) signals, we propose an arrhythmia classification method based on semantic segmentation. In our framework, ECG signals are firstly filtered and normalized, and divided into 30-second segments. Then, a convolutional neural network (CNN) with different dilation rates is designed to extract and integrate the multi-scale features of ECG signals. Particularly, we apply squeeze-and-excitation blocks to assign weights to features, and heartbeats are finally classified by Softmax function. Aiming at the problem of class-imbalance, the method of overlap between segments is futher adopted to increase the samples, and probability threshold values are set. We evaluate the performance of the proposed method on five public databases. The precision, sensitivity and F 1 score for fusion of ventricular contraction and normal beat (F), supraventricular escape beat (AE) and ventricular escape beat (VE) are all over than 90%. The proposed method combines CNN and semantic segmentation could be helpful for automated ECG diagnosis in clinical practice. |
doi_str_mv | 10.22489/CinC.2022.173 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_10081917</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10081917</ieee_id><sourcerecordid>10081917</sourcerecordid><originalsourceid>FETCH-LOGICAL-i119t-6e30b2acf8b9c0c4f730ceefa9df2f4479a138296840806087ae3f0f09279983</originalsourceid><addsrcrecordid>eNotjzFPwzAUhA0SElXJysSQP5DybCex31hCW5CKGOjAVr06z9QoSVFihv57LOCW-6STTndC3EpYKFVavG_C0CwUKLWQRl-IDA1aXYEGQAOXYqa0qgprzfu1yKbpE5IqY7G2M7FejuPxHI99oPyRI7sYTkP-QBO3eYI37mmIwSX46HmI9Bv705i_fHcxFB1Tm6-azY248tRNnP37XOzWq13zVGxfN8_NclsEKTEWNWs4KHLeHtCBK73R4Jg9YeuVL0uDJLVVaVkJFmqwhlh78IDKYPo0F3d_tYGZ919j6Gk87yWAlZiu_wD1W0sL</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Arrhythmia Detection Based on Semantic Segmentation for Multi-lead ECG</title><source>IEEE Xplore All Conference Series</source><creator>Xie, Hanshuang ; Zheng, Mengna ; Zhu, Huaiyu ; Wu, Fan ; Pan, Yun</creator><creatorcontrib>Xie, Hanshuang ; Zheng, Mengna ; Zhu, Huaiyu ; Wu, Fan ; Pan, Yun</creatorcontrib><description>In order to detect multi-class arrhythmias with high accuracy using multi-lead electrocardiogram (ECG) signals, we propose an arrhythmia classification method based on semantic segmentation. In our framework, ECG signals are firstly filtered and normalized, and divided into 30-second segments. Then, a convolutional neural network (CNN) with different dilation rates is designed to extract and integrate the multi-scale features of ECG signals. Particularly, we apply squeeze-and-excitation blocks to assign weights to features, and heartbeats are finally classified by Softmax function. Aiming at the problem of class-imbalance, the method of overlap between segments is futher adopted to increase the samples, and probability threshold values are set. We evaluate the performance of the proposed method on five public databases. The precision, sensitivity and F 1 score for fusion of ventricular contraction and normal beat (F), supraventricular escape beat (AE) and ventricular escape beat (VE) are all over than 90%. The proposed method combines CNN and semantic segmentation could be helpful for automated ECG diagnosis in clinical practice.</description><identifier>EISSN: 2325-887X</identifier><identifier>EISBN: 9798350300970</identifier><identifier>DOI: 10.22489/CinC.2022.173</identifier><language>eng</language><publisher>Creative Commons</publisher><subject>Arrhythmia ; Electrocardiography ; Heart beat ; Semantic segmentation ; Sensitivity ; Training</subject><ispartof>2022 Computing in Cardiology (CinC), 2022, Vol.498, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10081917$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10081917$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xie, Hanshuang</creatorcontrib><creatorcontrib>Zheng, Mengna</creatorcontrib><creatorcontrib>Zhu, Huaiyu</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Pan, Yun</creatorcontrib><title>Arrhythmia Detection Based on Semantic Segmentation for Multi-lead ECG</title><title>2022 Computing in Cardiology (CinC)</title><addtitle>CINC</addtitle><description>In order to detect multi-class arrhythmias with high accuracy using multi-lead electrocardiogram (ECG) signals, we propose an arrhythmia classification method based on semantic segmentation. In our framework, ECG signals are firstly filtered and normalized, and divided into 30-second segments. Then, a convolutional neural network (CNN) with different dilation rates is designed to extract and integrate the multi-scale features of ECG signals. Particularly, we apply squeeze-and-excitation blocks to assign weights to features, and heartbeats are finally classified by Softmax function. Aiming at the problem of class-imbalance, the method of overlap between segments is futher adopted to increase the samples, and probability threshold values are set. We evaluate the performance of the proposed method on five public databases. The precision, sensitivity and F 1 score for fusion of ventricular contraction and normal beat (F), supraventricular escape beat (AE) and ventricular escape beat (VE) are all over than 90%. The proposed method combines CNN and semantic segmentation could be helpful for automated ECG diagnosis in clinical practice.</description><subject>Arrhythmia</subject><subject>Electrocardiography</subject><subject>Heart beat</subject><subject>Semantic segmentation</subject><subject>Sensitivity</subject><subject>Training</subject><issn>2325-887X</issn><isbn>9798350300970</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2022</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjzFPwzAUhA0SElXJysSQP5DybCex31hCW5CKGOjAVr06z9QoSVFihv57LOCW-6STTndC3EpYKFVavG_C0CwUKLWQRl-IDA1aXYEGQAOXYqa0qgprzfu1yKbpE5IqY7G2M7FejuPxHI99oPyRI7sYTkP-QBO3eYI37mmIwSX46HmI9Bv705i_fHcxFB1Tm6-azY248tRNnP37XOzWq13zVGxfN8_NclsEKTEWNWs4KHLeHtCBK73R4Jg9YeuVL0uDJLVVaVkJFmqwhlh78IDKYPo0F3d_tYGZ919j6Gk87yWAlZiu_wD1W0sL</recordid><startdate>20220904</startdate><enddate>20220904</enddate><creator>Xie, Hanshuang</creator><creator>Zheng, Mengna</creator><creator>Zhu, Huaiyu</creator><creator>Wu, Fan</creator><creator>Pan, Yun</creator><general>Creative Commons</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20220904</creationdate><title>Arrhythmia Detection Based on Semantic Segmentation for Multi-lead ECG</title><author>Xie, Hanshuang ; Zheng, Mengna ; Zhu, Huaiyu ; Wu, Fan ; Pan, Yun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i119t-6e30b2acf8b9c0c4f730ceefa9df2f4479a138296840806087ae3f0f09279983</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Arrhythmia</topic><topic>Electrocardiography</topic><topic>Heart beat</topic><topic>Semantic segmentation</topic><topic>Sensitivity</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Xie, Hanshuang</creatorcontrib><creatorcontrib>Zheng, Mengna</creatorcontrib><creatorcontrib>Zhu, Huaiyu</creatorcontrib><creatorcontrib>Wu, Fan</creatorcontrib><creatorcontrib>Pan, Yun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xie, Hanshuang</au><au>Zheng, Mengna</au><au>Zhu, Huaiyu</au><au>Wu, Fan</au><au>Pan, Yun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Arrhythmia Detection Based on Semantic Segmentation for Multi-lead ECG</atitle><btitle>2022 Computing in Cardiology (CinC)</btitle><stitle>CINC</stitle><date>2022-09-04</date><risdate>2022</risdate><volume>498</volume><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2325-887X</eissn><eisbn>9798350300970</eisbn><abstract>In order to detect multi-class arrhythmias with high accuracy using multi-lead electrocardiogram (ECG) signals, we propose an arrhythmia classification method based on semantic segmentation. In our framework, ECG signals are firstly filtered and normalized, and divided into 30-second segments. Then, a convolutional neural network (CNN) with different dilation rates is designed to extract and integrate the multi-scale features of ECG signals. Particularly, we apply squeeze-and-excitation blocks to assign weights to features, and heartbeats are finally classified by Softmax function. Aiming at the problem of class-imbalance, the method of overlap between segments is futher adopted to increase the samples, and probability threshold values are set. We evaluate the performance of the proposed method on five public databases. The precision, sensitivity and F 1 score for fusion of ventricular contraction and normal beat (F), supraventricular escape beat (AE) and ventricular escape beat (VE) are all over than 90%. The proposed method combines CNN and semantic segmentation could be helpful for automated ECG diagnosis in clinical practice.</abstract><pub>Creative Commons</pub><doi>10.22489/CinC.2022.173</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2325-887X |
ispartof | 2022 Computing in Cardiology (CinC), 2022, Vol.498, p.1-4 |
issn | 2325-887X |
language | eng |
recordid | cdi_ieee_primary_10081917 |
source | IEEE Xplore All Conference Series |
subjects | Arrhythmia Electrocardiography Heart beat Semantic segmentation Sensitivity Training |
title | Arrhythmia Detection Based on Semantic Segmentation for Multi-lead ECG |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T05%3A29%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Arrhythmia%20Detection%20Based%20on%20Semantic%20Segmentation%20for%20Multi-lead%20ECG&rft.btitle=2022%20Computing%20in%20Cardiology%20(CinC)&rft.au=Xie,%20Hanshuang&rft.date=2022-09-04&rft.volume=498&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2325-887X&rft_id=info:doi/10.22489/CinC.2022.173&rft.eisbn=9798350300970&rft_dat=%3Cieee_CHZPO%3E10081917%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i119t-6e30b2acf8b9c0c4f730ceefa9df2f4479a138296840806087ae3f0f09279983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=10081917&rfr_iscdi=true |